Citation: | LI Hai-feng, WU Zhi-long, NIE Jing-jing, PENG Bo, GUI Zhong-cheng. Automatic crack detection algorithm for airport pavement based on depth image[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 250-260. doi: 10.19818/j.cnki.1671-1637.2020.06.022 |
[1] |
SONG Hong-xun, WANG Wei-xing, WANG Feng-ping, et al. Pavement crack detection by ridge detection on fractional calculus and dual-thresholds[J]. International Journal of Multimedia and Ubiquitous Engineering, 2015, 10(4): 19-30. doi: 10.14257/ijmue.2015.10.4.03
|
[2] |
张德津, 李清泉, 陈颖, 等. 基于空间聚集特征的沥青路面裂缝检测方法[J]. 自动化学报, 2016, 42(3): 443-454. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201603010.htm
ZHANG De-jin, LI Qing-quan, CHEN Ying, et al. Asphalt pavement crack detection based on spatial clustering featurel[J]. Acta Automatica Sinica, 2016, 42(3): 443-454. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201603010.htm
|
[3] |
OLIVEIRA H, CORREIA P L. Crack IT—an image processing toolbox for crack detection and characterization[C]∥DETLEV M. 2014 IEEE International Conference on Image Processing (ICIP). New York: IEEE, 2014: 798-802.
|
[4] |
AMHAZ R, CHAMBON S, IDIER J, et al. Automatic crack detection on 2D pavement images: an algorithm based on minimal path selection[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2718-2729. doi: 10.1109/TITS.2015.2477675
|
[5] |
SHI Yong, CUI Li-meng, QI Zhi-quan, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445. doi: 10.1109/TITS.2016.2552248
|
[6] |
李良福, 马卫飞, 李丽, 等. 基于深度学习的桥梁裂缝检测算法研究[J]. 自动化学报, 2019, 45(9): 1727-1742. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201909010.htm
LI Liang-fu, MA Wei-fei, LI Li, et al. Research on detection algorithm for bridge cracks based on deep learning[J]. Acta Automatica Sinica, 2019, 45(9): 1727-1742. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201909010.htm
|
[7] |
孙朝云, 马志丹, 李伟, 等. 基于深度卷积神经网络融合模型的路面裂缝识别方法[J]. 长安大学学报(自然科学版), 2020, 40(4): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202004002.htm
SUN Zhao-yun, MA Zhi-dan, LI Wei, et al. Pavement crack identification method based on deep convolutional neural network fusion mode[J]. Journal of Chang'an University (Natural Science Edition), 2020, 40(4): 1-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202004002.htm
|
[8] |
KATAKAM N. Pavement crack detection system through localized thresholding[D]. Toledo: The University of Toledo, 2009.
|
[9] |
徐威, 唐振民, 吕建勇. 基于图像显著性的路面裂缝检测[J]. 中国图象图形学报, 2018, 18(1): 69-77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201301010.htm
XU Wei, TANG Zhen-min, LYU Jian-yong. Pavement crack detection based on image saliency[J]. Journal of Image and Graphics, 2018, 18(1): 69-77. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201301010.htm
|
[10] |
瞿中, 鞠芳蓉, 陈思琪. 结构森林边缘检测与渗流模型相结合的混凝土表面裂缝检测[J]. 计算机科学, 2018, 45(11): 295-298, 311. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201811048.htm
QU Zhong, JU Fang-rong, CHEN Si-qi. Concrete surface cracks detection combining structured forest edge detection and percolation model[J]. Computer Science, 2018, 45(11): 295-298, 311. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA201811048.htm
|
[11] |
柴雪松, 朱兴永, 李健超, 等. 基于深度卷积神经网络的隧道衬砌裂缝识别算法[J]. 铁道建筑, 2018, 58(6): 60-65. doi: 10.3969/j.issn.1003-1995.2018.06.16
CHAI Xue-song, ZHU Xing-yong, LI Jian-chao, et al. Tunnel lining crack identification algorithm based on deep convolutional neural network[J]. Railway Engineering, 2018, 58(6): 60-65. (in Chinese). doi: 10.3969/j.issn.1003-1995.2018.06.16
|
[12] |
PRASANNA P, DANA K J, GUCUNSKI N, et al. Automated crack detection on concrete bridges[J]. IEEE Transactions on Automation Science and Engineering, 2014, 13(99): 1-9.
|
[13] |
曹锦纲, 杨国田, 杨锡运. 基于注意力机制的深度学习路面裂缝检测[J]. 计算机辅助设计与图形学学报, 2020, 32(8): 1324-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF202008014.htm
CAO Jin-gang, YANG Guo-tian, YANG Xi-yun. Pavement crack detection with deep learning based on attention mechanism[J]. Journal of Computer-Aided Design and Computer Graphics, 2020, 32(8): 1324-1333. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF202008014.htm
|
[14] |
RODRÍGUEZ-MARTÍN M, LAGÜELA S, GONZÁLEZ-AGUILERA D, et al. Thermographic test for the geometric characterization of cracks in welding using IR image rectification[J]. Automation in Construction, 2016, 61: 58-65. doi: 10.1016/j.autcon.2015.10.012
|
[15] |
XU Chang-hang, XIE Jing, CHEN Guo-ming, et al. An infrared thermal image processing framework based on superpixel algorithm to detect cracks on metal surface[J]. Infrared Physics and Technology, 2014, 67: 266-272. doi: 10.1016/j.infrared.2014.08.002
|
[16] |
PARK H, CHOI M, PARK J, et al. A study on detection of micro-cracks in the dissimilar metal weld through ultrasound infrared thermography[J]. Infrared Physics and Technology, 2014, 62: 124-131. doi: 10.1016/j.infrared.2013.10.006
|
[17] |
DHITAL D, LEE J R. A fully non-contact ultrasonic propagation imaging system for closed surface crack evaluation[J]. Experimental Mechanics, 2012, 52: 1111-1122. doi: 10.1007/s11340-011-9567-z
|
[18] |
ILIOPOULOS S, AGGELIS D G, PYL L, et al. Detection and evaluation of cracks in the concrete buffer of the Belgian nuclear waste container using combined NDT techniques[J]. Construction and Building Materials, 2015, 78: 369-378. doi: 10.1016/j.conbuildmat.2014.12.036
|
[19] |
HUANG Yu-chun, TSAI Y. Crack fundamental element (CFE) for multi-scale crack classification[C]//SCARPAS A. 7th RILEM International Conference on Cracking in Pavements. Berlin: Springer, 2012: 419-428.
|
[20] |
PENG Bo, WANG K C P, CHEN Cheng. Automatic crack detection by multi-seeding fusion on 1 mm resolution 3D pavement images[C]∥AMIY V. T & amp; amp; DI Congress 2014. Reston: ASCE, 2014: 543-552.
|
[21] |
李伟, 呼延菊, 沙爱民, 等. 基于3D数据和双尺度聚类算法的路面裂缝检测[J]. 华南理工大学学报(自然科学版), 2015, 43(8): 99-105. doi: 10.3969/j.issn.1000-565X.2015.08.015
LI Wei, HU Yan-ju, SHA Ai-min, et al. Two-scale clustering algorithm road pavement crack detection technology based on 3D data[J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(8): 99-105. (in Chinese). doi: 10.3969/j.issn.1000-565X.2015.08.015
|
[22] |
CAO Ting, WANG Wei-xing, TIGHE S, et al. Crack image detection based on fractional differential and fractal dimension[J]. IET Computer Vision, 2019, 13(1): 79-85. doi: 10.1049/iet-cvi.2018.5337
|
[23] |
宋葵阳, 徐贵力, 李开宇, 等. 基于结构光的路面裂缝检测方法研究[J]. 机械制造与自动化, 2016(6): 223-228. doi: 10.3969/j.issn.1671-5276.2016.06.060
SONG Kui-yang, XU Gui-li, LI Kai-yu, et al. Research on method of pavement crack detection based on structured light[J]. Machine Building and Automation, 2016(6): 223-228. (in Chinese). doi: 10.3969/j.issn.1671-5276.2016.06.060
|
[24] |
MOHAMMAD R J, FARROKH J, SAMI F M, et al. Unsupervised approach for autonomous pavement-defect detection and quantification using an inexpensive depth sensor[J]. Journal of Computing in Civil Engineering, 2013, 27: 743-754. doi: 10.1061/(ASCE)CP.1943-5487.0000245
|
[25] |
OUYANG W, XU B. Pavement cracking measurements using 3D laser-scan images[J]. Measurement Science and Technology, 2013, 24(10): 105204-1-9.
|
[26] |
蒋彬, 金湘亮. 改进的TOF相机谐波和强度误差校正算法设计[J]. 光学学报, 2020, 40(1): 0111024-1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202001025.htm
JIANG Bin, JIN Xiang-liang. Improved correction algorithm for harmonic- and intensity- related errors in time-of-flight cameras[J]. Acta Optica Sinica, 2020, 40(1): 0111024-1-10. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202001025.htm
|
[27] |
李占利, 周康, 牟琦, 等. TOF相机实时高精度深度误差补偿方法[J]. 红外与激光工程, 2019, 48(12): 1213004-1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201912035.htm
LI Zhan-li, ZHOU Kang, MU Qi, et al. TOF camera real-time high precision depth error compensation method[J]. Infrared and Laser Engineering, 2019, 48(12): 1213004-1-10. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201912035.htm
|
[28] |
杜瑞建, 葛宝臻, 陈雷. 多视高分辨率纹理图像与双目三维点云的映射方法[J]. 中国光学, 2020, 13(5): 1055-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA202005017.htm
DU Rui-jian, GE Bao-zhen, CHEN Lei. Texture mapping of multi-view high-resolution images and binocular 3D point clouds[J]. Chinese Optics, 2020, 13(5): 1055-1064. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA202005017.htm
|
[29] |
丁莹, 范静涛, 宋天喻. 双目立体视觉检测系统正向最优化设计方法研究[J]. 仪器仪表学报, 2016, 37(3): 650-657. doi: 10.3969/j.issn.0254-3087.2016.03.023
DING Ying, FAN Jing-tao, SONG Tian-yu. Optimal forward design method for the binocular stereo vision inspection system[J]. Chinese Journal of Scientific Instrument, 2016, 37(3): 650-657. (in Chinese). doi: 10.3969/j.issn.0254-3087.2016.03.023
|
[30] |
徐志刚, 车艳丽, 李金龙, 等. 路面破损图像自动处理技术研究进展[J]. 交通运输工程学报, 2019, 19(1): 172-190. doi: 10.3969/j.issn.1671-1637.2019.01.017
XU Zhi-gang, CHE Yan-li, LI Jin-long, et al. Research progress on automatic image processing technology for pavement distress[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 172-190. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.01.017
|
[31] |
刘飞, 何春桥, 申爱民, 等. 结构光饱和区域分区投射优化补偿方法[J]. 光学学报, 2018, 38(6): 0612001-1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201806023.htm
LIU Fei, HE Chun-qiao, SHEN Ai-min, et al. Optimized compensation method of divisional projection for saturated region of structured light[J]. Acta Optica Sinica, 2018, 38(6): 0612001-1-8. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201806023.htm
|
[32] |
CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
|