Citation: | ZHAO Xin, WEN Ze-feng, WANG Heng-yu, TAO Gong-quan, JIN Xue-song. Research progress on wheel/rail rolling contact fatigue of rail transit in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 1-35. doi: 10.19818/j.cnki.1671-1637.2021.01.001 |
[1] |
金学松, 沈志云. 轮轨滚动接触疲劳问题研究的最新进展[J]. 铁道学报, 2001, 23(2): 92-108. doi: 10.3321/j.issn:1001-8360.2001.02.019
JIN Xue-song, SHEN Zhi-yun. Rolling contact fatigue of wheel/rail and its advanced research progress[J]. Journal of the China Railway Society, 2001, 23(2): 92-108. (in Chinese) doi: 10.3321/j.issn:1001-8360.2001.02.019
|
[2] |
CANNON D F, EDEL K O, GRASSIE S L, et al. Rail defects: an overview[J]. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26(10): 865-886. doi: 10.1046/j.1460-2695.2003.00693.x
|
[3] |
SMITH R A. Railway fatigue failures: an overview of a long standing problem[J]. Material Science and Engineering Technology, 2005, 36(11): 697-705. http://www.onacademic.com/detail/journal_1000033884877610_2c93.html
|
[4] |
GRASSIE S L. Rolling contact fatigue on the British Railway System: treatment[J]. Wear, 2005, 258(7/8): 1310-1318. http://www.sciencedirect.com/science/article/pii/S0043164804002996
|
[5] |
LI Zi-li, DOLLEVOET R, MOLODOVA M, et al. Squat growth—some observations and the validation of numerical predictions[J]. Wear, 2011, 271(1/2): 148-157. http://www.sciencedirect.com/science/article/pii/S0043164810003856
|
[6] |
KARTTUNEN K, KABO E, EKBERG A. The influence of track geometry irregularities on rolling contact fatigue[J]. Wear, 2014, 314(1/2): 78-86. http://www.sciencedirect.com/science/article/pii/S0043164813005838
|
[7] |
GROHMANN H D, HEMPELMANN K A, GROB-THEBING A. A new type of RCF, experimental investigations and theoretical modeling[J]. Wear, 2002, 253(1/2): 67-74. http://www.sciencedirect.com/science/article/pii/S0043164802000844
|
[8] |
BOGDA AN' NSKI S. Quasi-static and dynamic liquid solid interaction in 3D squat-type cracks[J]. Wear, 2014, 314(1/2): 20-27. http://www.sciencedirect.com/science/article/pii/S004316481300567X
|
[9] |
TUNNA J, SINCLAIR J, PEREZ J. A review of wheel wear and rolling contact fatigue[J]. Proceedings of the Institution of Mechanical Engineer, Part F: Journal of Rail and Rapid Transit, 2007, 221(2): 271-289. doi: 10.1243/0954409JRRT72
|
[10] |
金学松, 张继业, 温泽峰, 等. 轮轨滚动接触疲劳现象分析[J]. 机械强度, 2002, 24(2): 250-257. doi: 10.3321/j.issn:1001-9669.2002.02.023
JIN Xue-song, ZHANG Ji-ye, WEN Ze-feng, et al. Overview of phenomena of rolling contact fatigue of wheel/rail[J]. Journal of Mechanical Strength, 2002, 24(2): 250-257. (in Chinese) doi: 10.3321/j.issn:1001-9669.2002.02.023
|
[11] |
CANNON D F. An international cross reference of rail defects[R]. Paris: International Union of Railways, 2003.
|
[12] |
EKBERG A, KABO E. Fatigue of railway wheels and rails under rolling contact and thermal loading—an overview[J]. Wear, 2005, 258(7): 1288-1300. http://www.sciencedirect.com/science/article/pii/S0043164804002972
|
[13] |
ZHANG Guan-zhen, REN Rui-ming. Study on typical failure forms and causes of high-speed railway wheels[J]. Engineering Failure Analysis, 2019, 105(1): 1287-1295. http://www.sciencedirect.com/science/article/pii/S135063071830654X
|
[14] |
CONG Tao, HAN Jian-min, HONG Youshi, et al. Shattered rim and shelling of high-speed railway wheels in the very-highcycle fatigue regime under rolling contact loading[J]. Engineering Failure Analysis, 2019, 97(1): 556-567. http://www.sciencedirect.com/science/article/pii/S1350630718312172
|
[15] |
DEUCE R. Wheel tread damage—an elementary guide[R]. Netphen: Bombardier Transportation Gmbh, 2007.
|
[16] |
MAGEL E. Rolling contact fatigue: a comprehensive review[R]. Washington DC: U.S. Department of Transportation, 2011.
|
[17] |
EKBERG A, KABO E, KARTTUNEN K, et al. Identifying the root causes of damage on the wheels of heavy haul locomotives and its mitigation[J]. Proceedings of the Institution of Mechanical Engineer, Part F: Journal of Rail and Rapid Transit, 2014, 228(6): 663-672. doi: 10.1177/0954409714526165
|
[18] |
ZHAO Xin, WEN Ze-feng, LIU De-gang, et al. Observations and monitoring of the rolling contact fatigue of Chinese high-speed wheels[C]//GAO Xiao-rong. Proceedings of the 18th International Wheelset Congress. New York: IEEE, 2016: 55-59.
|
[19] |
DOLLEVOET R. Design of an anti-head check profile based on stress relief[D]. Tenschede: University of Twente, 2010.
|
[20] |
FLETCHER D I, FRANKLIN F J, KAPOOR A. Rail surface fatigue and wear[M]//LEWIS R, OLOFSSON U. Wheel-Rail Interface Handbook. New York: CRC Press, 2009: 280-310.
|
[21] |
INNOTRACK. D4.1.4 Rail degradation algorithm[R]. Berlin: Corus Rail and voestalpine Schienen, 2009.
|
[22] |
ZHAO Xin. Dynamic wheel/rail rolling contact at singular defects with application to squats[D]. Delft: Delft University of Technology, 2012.
|
[23] |
ZHAO Xin, AN Bo-yang, ZHAO Xiao-gang, et al. Local rolling contact fatigue and indentations on high-speed railway wheels: observations and numerical simulations[J]. International Journal of Fatigue, 2017, 103(1): 5-16. http://www.sciencedirect.com/science/article/pii/S0142112317302281
|
[24] |
LUTHER M, MÄDLER K, HEYDER R. Prevention of multiple squats and rail maintenance measures[C]//LI Zi-li, NUNEZ A. Proceedings of the 11th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems. Delft: Delft University of Technology, 2018: 618-622.
|
[25] |
ZHAO Xin, WANG Zhe, WEN Ze-feng, et al. The initiation of local rolling contact fatigue on railway wheels: an experimental study[J]. International Journal of Fatigue, 2020, 132 (1): 105354. http://www.researchgate.net/publication/336861895_the_initiation_of_local_rolling_contact_fatigue_on_railway_wheels_an_experimental_study
|
[26] |
DANIEL W J, PAL S, FARJOO M. Rail squats: progress in understanding the Australian experience[J]. Proceedings of the Institution of Mechanical Engineer, Part F: Journal of Rail and Rapid Transit, 2013, 227(5): 481-492. doi: 10.1177/0954409713500950
|
[27] |
AI-JUBOORI A, ZHU H, WEXLER D. Characterisation of white etching layers formed on rails subjected to different traffic conditions[J]. Wear, 2019, 436/437(1): 202998. http://www.sciencedirect.com/science/article/pii/S0043164819301413
|
[28] |
LI Zi-li, ZHAO Xin, ESVELD C, et al. An investigation into the causes of squats: correlation analysis and numerical modeling[J]. Wear, 2008, 265(9/10): 1349-55. http://www.sciencedirect.com/science/article/pii/S0043164808001567
|
[29] |
习年生, 刘丰收, 周清跃. 钢轨滚动接触疲劳缺陷的特征与发展模式[J]. 理化检验—物理分册, 2005, 41(增): 95-99.
XI Nian-sheng, LIU Feng-shou, ZHOU Qing-yue. Characteristics and development modes of rail rolling contact fatigue[J]. Physical Testing and Chemical Analysis—Physical Testing, 2005, 41(S): 95-99.
|
[30] |
陈水友, 刘吉华, 郭俊, 等. 车轮材料特性对轮轨磨损与疲劳性能影响的研究[J]. 摩擦学学报, 2015, 35(5): 531-537. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201505003.htm
CHEN Shui-you, LIU Ji-hua, GUO Jun, et al. Effect of wheel material characteristics on wear and fatigue property of wheel-rail[J]. Tribology, 2015, 35(5): 531-537. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201505003.htm
|
[31] |
DONZELLA G, MAZZ A, PETROGALLI C. Competition between wear and rolling contact fatigue at the wheel-rail interface: some experimental evidence of rail steel[J]. Proceedings of the Institution of Mechanical Engineer, Part F: Journal of Rail and Rapid Transit, 2009, 223(1): 31-44. doi: 10.1243/09544097JRRT161
|
[32] |
EADIE D T, ELVIDGE D, OLDKNOW K, et al. The effects of top of rail friction modifier on wear and rolling contact fatigue: full-scale rail-wheel test rig evaluation, analysis and modeling[J]. Wear, 2008, 265(9/10): 1222-1230. http://www.sciencedirect.com/science/article/pii/S0043164808001695
|
[33] |
OLOFSSON U, NILSSON R. Surface cracks and wear of rail: a full-scale test on commuter train track[J]. Proceedings of the Institution of Mechanical Engineer, Part F: Journal of Rail and Rapid Transit, 2002, 216(4): 249-264. doi: 10.1243/095440902321029208
|
[34] |
BOYACIOGLU P, BEVAN A, VICKERSTAFF A. Prediction of RCF damage on underground metro lines[C]//ZHAI Wan-ming. Proceedings of the 1st International Conference on Rail Transportation. Chengdu: Southwest Jiaotong University, 2017: 207-225.
|
[35] |
FRANKLIN F J, WIDIYARTA I, KAPOOR A. Computer simulation of wear and rolling contact fatigue[J]. Wear, 2001, 251 (1/2): 949-955. http://www.sciencedirect.com/science/article/pii/S0043164801007323
|
[36] |
FRANKLIN F J, GARNHAM J E, FLETCHER D I, et al. Modelling rail steel microstructure and its effect on crack initiation[J]. Wear, 2008, 265(9): 1332-1341. http://www.sciencedirect.com/science/article/pii/S0043164808001981
|
[37] |
VASIC G, FRANKLIN F J. Modelling of plastic deformation and crack initiation in premium pearlitic rail steels[C]//GRASSIE K L, ZHANG Wei-hua. Proceedings of the 9th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems. Chengdu: Southwest Jiaotong University, 2012: 372-378.
|
[38] |
丁军君, 孙树磊, 李芾, 等. 车轮滚动接触疲劳与磨耗耦合关系数值模拟[J]. 机械工程学报, 2012, 48(16): 86-90. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201216016.htm
DING Jun-jun, SUN Shu-lei, LI Fu, et al. Simulation of coupling relationship between wheel rolling contact fatigue and wear[J]. Journal of Mechanical Engineering, 2012, 48(16): 86-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201216016.htm
|
[39] |
WANG Shuai-shuai, ZHAO Xiu-juan, LIU Peng-tao, et al. Investigation of the relation between rolling contact fatigue property and microstructure on the surface layer of D2 wheel steel[J]. Materials Sciences and Applications, 2019, 10(8): 509-526. doi: 10.4236/msa.2019.108037
|
[40] |
VARVANI-FARAHANI A, TOPPER T H. Crack growth and closure mechanisms of shear cracks under constant amplitude biaxial straining and periodic compressive overstraining in 1045 steel[J]. International journal of fatigue, 1997, 19(7): 589-596. doi: 10.1016/S0142-1123(97)00077-7
|
[41] |
CLAYTON P. Tribological aspects of wheel-rail contact: a review of recent experimental research[J]. Wear, 1996, 191(1): 170-183. http://www.sciencedirect.com/science/article/pii/0043164895066519
|
[42] |
JOHNSON K L. The strength of surfaces in rolling contact[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1989, 203(3): 151-163.
|
[43] |
CHEN H, FUKAGAI S, SONE Y, et al. Assessment of lubricant applied to wheel/rail interface in curves[J]. Wear, 2014, 314(1/2): 228-35. http://www.sciencedirect.com/science/article/pii/S0043164813006029
|
[44] |
TYFOUR W R, BEYNON J H, KAPOOR A. Deterioration of rolling contact fatigue life of pearlitic rail steel due to dry-wet rolling-sliding line contact[J]. Wear, 1996, 197(1): 255-265. http://www.sciencedirect.com/science/article/pii/0043164896069785
|
[45] |
STEENBERGEN M. Squat formation and rolling contact fatigue in curved rail track[J]. Engineering Fracture Mechanics, 2015, 143(7): 80-96. http://www.sciencedirect.com/science/article/pii/S0013794415002945
|
[46] |
BOWER A F. The influence of crack face friction and trapped fluid on surface initiated rolling contact fatigue cracks[J]. Journal of Tribology, 1988, 110(4): 704-711. doi: 10.1115/1.3261717
|
[47] |
BOGDANSKI S, OLZAK M, STUPNICKI J. Numerical modelling of a 3D rail RCF squat-type crack under operating load[J]. Fatigue and Fracture of Engineering Materials and Structures, 1998, 21(8): 923-935. doi: 10.1046/j.1460-2695.1998.00082.x
|
[48] |
CLAYTON P, HILL D N. Rolling contact fatigue of a rail steel[J]. Wear, 1987, 117(3): 319-334. doi: 10.1016/0043-1648(87)90152-9
|
[49] |
FLETCHER D I, BEYNON J H. The effect of intermittent lubrication on the fatigue life of pearlitic rail steel in rolling-sliding contact[J]. Proceedings of the Institution of Mechanical Engineer, Part F: Journal of Rail and Rapid Transit, 2000, 214(3): 145-158. doi: 10.1243/0954409001531270
|
[50] |
ISHIDA M, ABE N. Experimental study on rolling contact fatigue from the aspect of residual stress[J]. Wear, 1996, 191(1): 65-71. http://www.sciencedirect.com/science/article/pii/0043164895067124
|
[51] |
SATO M, ANDERSON P M, RIGNEY D A. Rolling-sliding behavior of rail steels[J]. Wear, 1993, 162-164(4): 159-72. http://www.sciencedirect.com/science/article/pii/004316489390497A
|
[52] |
LITTMANN W E, WIDNER R L, WOLFE J O, et al. The role of lubrication in propagation of contact fatigue cracks[J]. Journal of Tribology, 1968, 90(1): 89-100. http://www.researchgate.net/publication/273931759_Closure_to_Discussions_of_'The_Role_of_Lubrication_in_Propagation_of_Contact_Fatigue_Cracks'_1968_ASME_J_Lubr_Technol_90_p_630-632
|
[53] |
KONDO K, YOROIZAKA K, SATO Y. Cause, increase, diagnosis, countermeasures and elimination of Shinkansen shelling[J]. Wear, 1996, 191(1): 199-203. http://www.sciencedirect.com/science/article/pii/0043164895067272
|
[54] |
KALOUSEK J, MAGEL E, STRASSER J, et al. Tribological interrelationship of seasonal fluctuations of freight car wheel wear, contact fatigue shelling and composition brakeshoe consumption[J]. Wear, 1996, 191(1): 210-218. http://www.sciencedirect.com/science/article/pii/0043164895067000
|
[55] |
FLETCHER D I, HYDE P, KAPOOR A. Modelling and full-scale trials to investigate fluid pressurisation of rolling contact fatigue cracks[J]. Wear, 2008, 265(9): 1317-1324. http://www.sciencedirect.com/science/article/pii/S0043164808001543
|
[56] |
NIA S H, CASANUEVA C, STICHEL S. Prediction of RCF and wear evolution of iron-ore locomotive wheels[J]. Wear, 2015, 338/339(1): 62-72. http://www.sciencedirect.com/science/article/pii/S0043164815003300
|
[57] |
HARDWICK C, LEWIS R, STOCK R. The effects of friction management materials on rail with pre-existing RCF surface damage[J]. Wear, 2017, 384/385(1): 50-60. http://www.sciencedirect.com/science/article/pii/S0043164816306111
|
[58] |
EKBERG A, AKESSON B, KABO E. Wheel/rail rolling contact fatigue-probe, predict, prevent[J]. Wear, 2014, 314(1/2): 2-12. http://www.sciencedirect.com/science/article/pii/S0043164813006005
|
[59] |
ARIAS-CUEVAS O, LI Zi-li, LEWIS R, Investigating the lubricity and electrical insulation caused by sanding in dry wheel-rail contact[J]. Tribology Letter, 2010, 37(3): 623-635. doi: 10.1007/s11249-009-9560-1
|
[60] |
ZHAO Xin, WEN Ze-feng, ZHU Min-hao, et al. A study on high-speed rolling contact between a wheel and a contaminated rail[J]. Vehicle System Dynamics, 2014, 52(10): 1270-1287. doi: 10.1080/00423114.2014.934845
|
[61] |
张振先, 谭江, 黄双超, 等. 复杂运行环境下高速轮轨最佳撒砂增黏策略试验[J]. 中国铁道科学, 2020, 41(2): 123-130. doi: 10.3969/j.issn.1001-4632.2020.02.15
ZHANG Zhen-xian, TAN Jiang, HUANG Shuang-chao, et al. Experimental study on optimum sanding and adhesion enhancement strategy for high speed wheel and rail under complicated operation environments[J]. China Railway Science, 2020, 41(2): 123-130. (in Chinese) doi: 10.3969/j.issn.1001-4632.2020.02.15
|
[62] |
张军, 王雪萍, 马贺. 第三介质对轮轨最大静摩擦因数影响的试验[J]. 机械工程学报, 2018, 54(18): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201818016.htm
ZHANG Jun, WANG Xue-ping, MA He. Experimental study on the influence of the third medium on the wheel/rail maximum static friction coefficient[J]. Journal of Mechanical Engineering, 2018, 54(18): 123-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201818016.htm
|
[63] |
CAO X, HUANG W L, HE C G, et al. The effect of alumina particle on improving adhesion and wear damage of wheel/rail under wet conditions[J]. Wear, 2016, 348/349: 98-115. doi: 10.1016/j.wear.2015.12.004
|
[64] |
FACCOLI M, PETROGALLI C, LANCINI M, et al. Effect of desert sand on wear and rolling contact fatigue behaviour of various railway wheel steels, Wear, 2017, 396/397: 146-161. http://www.sciencedirect.com/science/article/pii/S0043164817304064
|
[65] |
LEWIS R, DWYER-JOYCE R S, Wheel-rail wear and surface damage caused by adhesion sanding[J]. Tribology Series, 2003, 43(1): 731-741. http://www.sciencedirect.com/science/article/pii/S0167892203801013
|
[66] |
LIU Yong-feng, JIANG Tao, ZHAO Xin, et al. On the wheel rolling contact fatigue of high power ac locomotives running in complicated environments[J]. Wear, 2019, 436/437: 202956. doi: 10.1016/j.wear.2019.202956
|
[67] |
刘丰收. 高速铁路钢轨磨耗的跟踪研究[J]. 铁道建筑, 2016, 56(11): 120-123. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201611032.htm
LIU Feng-shou. Tracing research on rail wear in high-speed railway[J]. Railway Engineering, 2016, 56(11): 120-123. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201611032.htm
|
[68] |
TG/GL 127—2013, 铁路动车组运用维修规程[S].
TG/GL 127—2013, railway EMU operation and maintenance regulations[S].
|
[69] |
中国国家铁路集团有限公司. 2019年全路钢轨伤损分析报告[R]. 北京: 中国国家铁路集团有限公司, 2020.
China Railway. Report of rail failure on Chinese railway network[R]. Beijing: China Railway, 2020.
|
[70] |
PLETZ M, DAVES W, YAO Wei-ping, et al. Multi-scale finite element modeling to describe rolling contact fatigue in a wheel-rail test rig[J]. Tribology International, 2014, 80(1): 147-155. http://www.sciencedirect.com/science/article/pii/S0301679X14002643
|
[71] |
ZHAO Xin, ZHAO Xiao-gang, LIU Chao, et al. A study on dynamic stress intensity factors of rail cracks at high speeds by a 3D explicit finite element model of rolling contact[J]. Wear, 2016, 366/367(1): 60-70. http://www.sciencedirect.com/science/article/pii/S0043164816301156
|
[72] |
GARNHAM J E, DAVIS C L. The role of deformed rail microstructure on rolling contact fatigue initiation[J]. Wear, 2008, 265(9/10): 1363-1372. http://www.sciencedirect.com/science/article/pii/S004316480800183X
|
[73] |
JOHNSON K L. Contact mechanics[D]. London: Cambridge University Press, 1985.
|
[74] |
HIRAKAWA K. Truth of derailment at Hatfield in UK[M]. Kyoto: Keibunsha, 2008. (in Japanese)
|
[75] |
MAKINO T, KATO T, HIRAKAWA K. The effect of slip ratio on the rolling contact fatigue property of railway wheel steel[J]. International Journal of Fatigue, 2012, 36(1): 68-79. doi: 10.1016/j.ijfatigue.2011.08.014
|
[76] |
EKBERG A, KABO E, ANDERSSON H. An engineering model for prediction of RCF of railway wheels[J]. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25(10): 899-909. doi: 10.1046/j.1460-2695.2002.00535.x
|
[77] |
DIRKS B, ENBLOM R. Prediction model for wheel profile wear and rolling contact fatigue[J] Wear, 2011, 271(1): 210-217.
|
[78] |
KABO E, EKBERG A, TORSTENSSON P T, at al. Rolling contact fatigue prediction for rails and comparisons with test rig results[J]. Proceedings of the Institution of Mechanical Engineer, Part F: Journal of Rail and Rapid Transit, 2010, 224(4): 303-317. doi: 10.1243/09544097JRRT343
|
[79] |
BURSTOW M C. Whole life rail model application and development for RSSB, continued development of an RCF damage parameter[R]. London: Rail Standards and Safety Board, 2004.
|
[80] |
TUNNA J, SINCLAIR J, PEREZ J. The development of a wheel wear and rolling contact fatigue model[R]. London: Rail Standards and Safety Board, 2007.
|
[81] |
BURSTOW M. Experience of premium grade rail steels to resist rolling contact fatigue RCF on GB network[J]. Ironmaking and Steelmaking, 2013, 40(2): 103-107. doi: 10.1179/1743281212Y.0000000042
|
[82] |
HIENSCH M, STEENBERGEN M. Rolling contact fatigue on premium rail grades: damage function development from field data[J]. Wear, 2018, 394/395(1): 187-194. http://www.sciencedirect.com/science/article/pii/S0043164817313492
|
[83] |
HILL D N, CLAYTON P. The development of a laboratory rolling contact fatigue testing procedure[R]. Derby: TMMF, 1982.
|
[84] |
刘颍宾, 宫彦华, 王强, 等. 列车车轮滚动接触疲劳裂纹评价研究[J]. 摩擦学学报, 2020, 40(3): 305-313. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX202003005.htm
LIU Ying-bin, GONG Yan-hua, WANG Qiang, et al. Evaluation of rolling contact fatigue crack of train wheels[J]. Tribology, 2020, 40(3): 305-313. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX202003005.htm
|
[85] |
RINGSBERG J W, LOO-MORREY M, JOSEFSON B L, et al. Prediction of fatigue crack initiation for rolling contact fatigue[J]. International Journal of Fatigue, 2000, 22(3): 205-215. doi: 10.1016/S0142-1123(99)00125-5
|
[86] |
JIANG Yan-yao, SEHITOGLU H. A model for rolling contact failure[J]. Wear, 1999, 224(1): 38-49. doi: 10.1016/S0043-1648(98)00311-1
|
[87] |
SANDSTRÖM J, EKBERG A. Numerical study of the mechanical deterioration of insulated rail joints[J]. Proceedings of the Institution of Mechanical Engineer, Part F: Journal of Rail and Rapid Transit, 2009, 223(3): 265-273. doi: 10.1243/09544097JRRT243
|
[88] |
TALLIAN T E. Simplified contact fatigue life prediction model: part I. Review of published models, part Ⅱ. New model[J]. Journal of Tribology, 1992, 114(2): 207-220. doi: 10.1115/1.2920875
|
[89] |
VAN K D, MAITOURNAM M H. On some recent trends in modeling of contact fatigue and wear in rail[J]. Wear, 2002, 253(1/2): 219-227. http://www.sciencedirect.com/science/article/pii/S0043164802001047
|
[90] |
SAKALO V, SAKALO A, RODILOV A, et al. Computer modeling of processes of wear and accumulation of rolling contact fatigue damage in railway wheels using combined criterion[J]. Wear, 2019, 432/433(1): 102900.
|
[91] |
LU C, NIETO J, PUY I, et al. Fatigue prediction of rail welded joints[J]. International Journal of Fatigue, 2018, 113(1): 78-87. http://www.sciencedirect.com/science/article/pii/S0142112318301300
|
[92] |
LI Zi-li, ZHAO Xin, DOLLEVOET R. An approach to determine a critical size for rolling contact fatigue initiating from rail surface defects[J]. International Journal of Rail Transportation, 2017, 5(1): 16-37. doi: 10.1080/23248378.2016.1194775
|
[93] |
王延朋, 丁昊昊, 邹强, 等, 列车车轮踏面滚动接触疲劳研究进展[J]. 表面技术, 2020, 49(5): 120-128. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202005016.htm
WANG Yan-peng, DING Hao-hao, ZOU Qiang, et al. Research progress on rolling contact fatigue of railway wheel treads[J]. Surface Technology, 2020, 49(5): 120-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS202005016.htm
|
[94] |
肖乾, 方骏. 铁道车辆轮轨滚动接触疲劳裂纹研究综述[J]. 华东交通大学学报, 2015, 32(1): 16-21. doi: 10.3969/j.issn.1005-0523.2015.01.003
XIAO Qian, FANG Jun. Research review on wheel-rail rolling contact fatigue crack of railway vehicles[J]. Journal of East China Jiaotong University, 2015, 32(1): 16-21. (in Chinese) doi: 10.3969/j.issn.1005-0523.2015.01.003
|
[95] |
ZHAO Xin, LI Zi-li, DOLLEVOET R. The vertical and the longitudinal dynamic responses of the vehicle-track system to squat type short wavelength irregularity[J]. Vehicle System Dynamics, 2013, 51(12): 1918-1937. doi: 10.1080/00423114.2013.847466
|
[96] |
ZHAO Xin, WEN Ze-feng, WANG Heng-yu, et al. Modeling of high-speed wheel-rail rolling contact on a corrugated rail and corrugation development[J]. Journal of Zhejiang University—Science A (Applied Physics and Engineering), 2014, 15(12): 946-963. doi: 10.1631/jzus.A1400191/figures/18
|
[97] |
寇峻瑜, 赵鑫, 张鹏, 等. 高速滚滑下轮轨表层材料的应变率水平估计[J]. 工程力学, 2019, 36(4): 239-247. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201904027.htm
KOU Jun-yu, ZHAO Xin, ZHANG Peng. Estimation of strain rates for wheel-rail surface materials under high-speed rolling-sliding contact[J]. Engineering Mechanics, 2019, 36(4): 239-247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201904027.htm
|
[98] |
STOCK R, PIPPAN R. RCF and wear in theory and practice—the influence of rail grade on wear and RCF[J]. Wear, 2011, 271(1): 125-133. http://www.sciencedirect.com/science/article/pii/S0043164810003492
|
[99] |
王文健. 轮轨滚动接触疲劳与磨损耦合关系及预防措施研究[D]. 成都: 西南交通大学, 2008.
WANG Wen-jian. Study on coupling relationship between rolling contact fatigue and wear of wheel-rail and prevention measures[D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese)
|
[100] |
POINTNER P. High strength rail steels—the importance of material properties in contact mechanics problems[J]. Wear, 2008, 265 (9/10): 1373-1379. http://www.sciencedirect.com/science/article/pii/S0043164808001841
|
[101] |
STEELE R K, REIFF R P. Rail: its behaviour and relationship to total system wear[C]//Federal Railroad Administration. Proceedings of International Heavy Haul Conference. Pueblo: Federal Railroad Administration, 1981: 115-164.
|
[102] |
ZHAO Xin, LI Zi-li. The solution of frictional wheel-rail rolling contact with a 3-D transient finite element model: validation and error analysis[J]. Wear, 2011, 271(1/2): 444-452. http://www.sciencedirect.com/science/article/pii/S0043164810003418
|
[103] |
ZHAO Xin, LI Zi-li. A three-dimensional finite element solution of frictional wheel-rail rolling contact in elasto-plasticity[J]. Journal of Engineering Tribology, 2015, 229(1): 86-100. doi: 10.1177/1350650114543717
|
[104] |
ZHAO Xin, ZHANG Peng, WEN Ze-feng. On the coupling of the vertical, lateral and longitudinal wheel-rail interactions at high frequencies and the resulting irregular wear[J]. Wear, 2019, 430/431(1): 317-326. http://www.sciencedirect.com/science/article/pii/S0043164819300134
|
[105] |
周平宇, 马利军. 关于动车组车轮踏面浅表层损伤机理及对策[J]. 铁道车辆, 2015, 53(2): 30-31. doi: 10.3969/j.issn.1002-7602.2015.02.010
ZHOU Ping-yu, MA Li-jun. The shallow surface damage mechanism of wheel treads for multiple units and counter measures[J]. Rolling Stock, 2015, 53(2): 30-31. (in Chinese) doi: 10.3969/j.issn.1002-7602.2015.02.010
|
[106] |
王培东, 郑静, 李富强. 动车组车轮踏面滚动接触疲劳安全评估研究[J]. 铁道车辆, 2020, 58(2): 12-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL202002005.htm
WANG Pei-dong, ZHENG Jing, LI Fu-qiang. Studies into rolling contact fatigue of EMU wheels[J]. Rolling Stock, 2020, 58(2): 12-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL202002005.htm
|
[107] |
CANTINI S, CERVELLO S. The competitive role of wear and RCF: full scale experimental assessment of artificial and natural defects in railway wheel treads[J]. Wear, 2016, 366/367(1): 325-37.
|
[108] |
张弘. 动车组车轮踏面浅表层裂纹成因分析[J]. 铁道机车车辆, 2006: 36(1): 6-9. doi: 10.3969/j.issn.1008-7842.2006.01.003
ZHANG Hong. Reason analysis of shallow surface cracks on EMU wheels tread[J]. Railway Locomotive and Car, 2006, 36(1): 6-9. (in Chinese) doi: 10.3969/j.issn.1008-7842.2006.01.003
|
[109] |
ZHAO Xiang-ji, GUO Jun, LIU Qi-yue, et al. Effects of spherical dents on microstructure evolution and rolling contact fatigue of wheel/rail materials[J]. Tribology International, 2018, 127(11): 520-532. http://www.sciencedirect.com/science/article/pii/S0301679X18303293
|
[110] |
ZENG Dong-fang, XU Tian, LIU Wei-dong, et al. Investigation on rolling contact fatigue of railway wheel steel with surface defect[J]. Wear, 2020, 446/447(1): 203207. http://www.sciencedirect.com/science/article/pii/S0043164819314097
|
[111] |
蔡宇天, 赵鑫, 陈佳明, 等. 城际动车组车轮I类滚动接触疲劳机理研究[J]. 中南大学学报(自然科学版), 2020, 51(9): 2653-2662. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202009031.htm
CAI Yu-tian, ZHAO Xin, CHEN Jiaming, et al. Study on initiation mechanism of rolling contact fatigue class I on intercity EMU wheels[J]. Journal of Central South University (Science and Technology), 2020, 51(9): 2653-2662. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202009031.htm
|
[112] |
王玉光, 卢纯, 赵鑫, 等. 高速动车组车轮滚动接触疲劳观测与模拟研究[J]. 机械工程学报, 2018, 54(4): 150-157. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804024.htm
WANG Yu-guang, LU Cun, ZHAO Xin, et al. Rolling contact fatigue of Chinese high speed wheels: observations and simulations[J]. Journal of Mechanical Engineering, 2018, 54(4): 150-157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804024.htm
|
[113] |
MAGEL E, RONEY M, KALOUSEK J, et al. The blending of theory and practice in modern rail grinding[J]. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26(1): 921-929. doi: 10.1046/j.1460-2695.2003.00669.x
|
[114] |
CUI Da-bin, WANG Heng-yu, LI Li, et al. Optimal design of wheel profiles for high-speed trains[J]. Proceedings of the Institution of Mechanical Engineer, Part F: Journal of Rail and Rapid Transit, 2015, 229(3): 248-261. doi: 10.1177/0954409713509979
|
[115] |
王晓东, 林晓晨, 李培署. 和谐号CRH6型动车组制动减速度设计与控制[J]. 铁道车辆, 2016, 54(6): 15-19, 4. doi: 10.3969/j.issn.1002-7602.2016.06.005
WANG Xiao-dong, LIN Xiao-chen, LI Pei-shu. Design and control of the braking deceleration of the CRH6 multiple units[J]. Rolling Stock, 2016, 54(6): 15-19, 4. (in Chinese) doi: 10.3969/j.issn.1002-7602.2016.06.005
|
[116] |
丁叁叁, 张忠敏, 何丹炉, 等. 城际动车组总体技术设计[J]. 机车电传动, 2014(6): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201406005.htm
DING San-san, ZHANG Zhong-min, HE Dan-lu, et al. Overall technical design of intercity EMUs[J]. Electric Drive for Locomotives, 2014(6): 10-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201406005.htm
|
[117] |
何成刚, 周桂源, 王娟, 等. 曲率半径对车轮滚动接触疲劳性能的影响[J]. 摩擦学学报, 2014, 34(3): 256-261. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201403007.htm
HE Cheng-gang, ZHOU Gui-yuan, WANG Juan, et al. Effect of curve radius of rail on rolling contact fatigue properties of wheel steel[J]. Tribology, 2014, 34(3): 256-261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201403007.htm
|
[118] |
ZHOU Gui-yuan, HE Cheng-gang, WEN Guang, et al. Fatigue damage mechanism of railway wheels under lateral forces[J]. Tribology International, 2015, 91(1): 160-169. http://www.sciencedirect.com/science/article/pii/S0301679X15002935
|
[119] |
李霞, 温泽峰, 金学松. 重载铁路车轮磨耗与滚动接触疲劳研究[J]. 铁道学报, 2011, 33(3): 28-34. doi: 10.3969/j.issn.1001-8360.2011.03.005
LI Xia, WEN Ze-feng, JIN Xue-song. Investigation into wheel wear and fatigue of heavy-haul railways[J]. Journal of the China Railway Society, 2011, 33(3): 28-34. (in Chinese) doi: 10.3969/j.issn.1001-8360.2011.03.005
|
[120] |
HUANG Y B, SHI L B, ZHAO X J, et al. On the formation and damage mechanism of rolling contact fatigue surface cracks of wheel/rail under the dry condition[J]. Wear, 2018, 400/401(1): 62-73.
|
[121] |
邓建辉, 刘启跃, 王飞龙, 等. 车速对钢轨接触疲劳伤损的影响及高速线路钢轨选用[J]. 钢铁钒钛, 2006, 27(3): 48-54. doi: 10.3969/j.issn.1004-7638.2006.03.010
DENG Jian-hui, LIU Qi-yue, WANG Fei-long, et al. Influence of train velocity on rail contact fatigue damage and how to select rail for high-speed[J]. Iron Steel Vanadium Titanium, 2006, 27(3): 48-54. (in Chinese) doi: 10.3969/j.issn.1004-7638.2006.03.010
|
[122] |
XIAO Qian, ZHENG Ji-feng, LIU Ji-hua, et al. Analysis of the wheel/rail rolling contact fatigue of a high-speed train under the transient mechanism[J]. Journal of Mechanical Science and Technology, 2017, 31(5): 2235-2242. doi: 10.1007/s12206-017-0420-x
|
[123] |
NIELSEN J C O, EKBERG A. Acceptance criterion for rail roughness level spectrum based on assessment of rolling contact fatigue and rolling noise[J]. Wear, 2011, 271(1/2): 319-327. http://www.sciencedirect.com/science/article/pii/S0043164810003479
|
[124] |
EKBERG A, KABO E, NIELSEN J C O, et al. Subsurface initiated rolling contact fatigue of railway wheels as generated by rail corrugation[J]. International Journal of Solids and Structures, 2007, 44(24): 7975-7987. doi: 10.1016/j.ijsolstr.2007.05.022
|
[125] |
MA L, HE C G, ZHAO X J, et al. Study on wear and rolling contact fatigue behaviors of wheel/rail materials under different slip ratio conditions[J]. Wear, 2016, 366/367(1): 13-26.
|
[126] |
张聪聪, 周宇, 黄旭炜, 等. 高速铁路钢轨预打磨策略及伤损发展特征[J]. 华东交通大学学报, 2019, 36(2): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201902006.htm
ZHANG Cong-cong, ZHOU Yu, HUANG Xun-wei, et al. Research on the rail pre-grinding strategy and growth characteristics of rail defects in high-speed railway[J]. Journal of East China Jiaotong University, 2019, 36(2): 33-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201902006.htm
|
[127] |
STONE D H. Rolling contact fatigue origins of wheel failures in heavy haul service[C]//GRASSIE K L, ZHANG Wei-hua. Proceedings of 9th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems. Chengdu: Southwest Jiaotong University, 2012, 19-27.
|
[128] |
王家玉, 王顺福. 机车轮对JM、JM2、JM3磨耗型踏面及其剥离[J]. 内燃机车, 2009(5): 34-37. doi: 10.3969/j.issn.1003-1820.2009.05.011
WANG Jia-yu, WANG Shun-fu. Worn profile tread JM, JM2 and JM3 for locomotive wheel and the tread shelled-out[J]. Diesel Locomotives, 2009(5): 34-37. (in Chinese) doi: 10.3969/j.issn.1003-1820.2009.05.011
|
[129] |
LIU Yong-feng, JIANG Tao, ZHAO Xin, et al. Effects of axle load transfer on wheel rolling contact fatigue of high-power AC locomotives with oblique traction rods[J]. International Journal of Fatigue, 2020, 139(1): 105748. http://www.sciencedirect.com/science/article/pii/S0142112320302796
|
[130] |
LYU Kai-kai, WANG Kai-yun, LIU Peng-fei, et al. Analysis on the features and potential causes of wheel surface damage for heavy-haul locomotives[J]. Engineering Failure Analysis, 2019, 109(1): 104292. http://www.sciencedirect.com/science/article/pii/S135063071930785X
|
[131] |
吕凯凯. 大功率电力机车踏面剥离产生机制的理论与试验研究[D]. 成都: 西南交通大学, 2020.
LYU Kai-kai. Theoretical and experimental investigation into the generation mechanism of wheel tread spalling on high-power electric locomotive[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
|
[132] |
王文斌. HXD2C型机车轮对踏面剥离问题的分析研究[J]. 机车电传动, 2017(4): 113-116. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201704031.htm
WANG Wen-bin. A study on wheel spalling of HXD2C locomotives[J] Electric Drive for Locomotives, 2017(4): 113-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201704031.htm
|
[133] |
崔银会, 张斌. 200 km·h-1轻型客车车轮踏面剥离原因分析[J]. 轧钢, 2003, 20(3): 13-15. doi: 10.3969/j.issn.1003-9996.2003.03.005
CUI Yin-hui, ZHANG Bin. Analysis of the shelling causes of wheel tread of 200 km·h-1 light passenger train[J]. Steel Rolling, 2003, 20(3): 13-15. (in Chinese) doi: 10.3969/j.issn.1003-9996.2003.03.005
|
[134] |
陶功权, 王衡禹, 赵鑫, 等. 基于轮轨关系的车轮踏面损伤机理研究[J]. 机械工程学报, 2013, 49(18): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318004.htm
TAO Gong-quan, WANG Heng-yu, ZHAO Xin, et al. Research on wheel tread damage mechanism based on interaction of wheel and rail[J]. Journal of Mechanical Engineering, 2013, 49(18): 23-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318004.htm
|
[135] |
陶功权. KKD客车车轮踏面剥离成因初探[D]. 成都: 西南交通大学, 2013.
TAO Gong-quan. Preliminary study on the cause of wheel tread shelling of KKD passenger car[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese)
|
[136] |
ZHOU Yu, WANG Shao-feng, WANG Tian-yi, et al. Field and laboratory investigation of the relationship between railhead check and wear in a heavy-haul railway[J]. Wear, 2014, 315(1/2): 68-77. http://www.sciencedirect.com/science/article/pii/S0043164814001264
|
[137] |
周宇, 张杰, 杨新文, 等. U75V热处理钢轨滚动接触疲劳裂纹和磨耗试验[J]. 同济大学学报(自然科学版), 2015, 43(6): 877-881. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201506011.htm
ZHOU Yu, ZHANG Jie, YANG Xin-wen, et al. Experiment on the rolling contact fatigue crack and wear of U75V heat-treated rail[J]. Journal of Tongji University (Natural Science), 2015, 43(6): 877-881. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201506011.htm
|
[138] |
周宇, 李骏鹏, 司道林. 普速铁路钢轨滚动接触疲劳裂纹萌生研究和检验[J]. 铁道建筑, 2020, 60(5): 107-111. doi: 10.3969/j.issn.1003-1995.2020.05.25
ZHOU Yu, LI Jun-peng, SI Dao-lin. Research and validation on rolling contact fatigue crack initiation in existing common speed railway[J]. Railway Engineering, 2020, 60(5): 107-111. (in Chinese) doi: 10.3969/j.issn.1003-1995.2020.05.25
|
[139] |
刘学文, 邹定强, 邢丽贤, 等. 钢轨踏面斜裂纹伤损原因及对策的研究[J]. 中国铁道科学, 2004, 25(2): 82-87. doi: 10.3321/j.issn:1001-4632.2004.02.017
LIU Xue-wen, ZOU Ding-qiang, XING Li-xian. Causes of tread oblique crack and countermeasures[J]. China Railway Science, 2004, 25(2): 82-87. (in Chinese) doi: 10.3321/j.issn:1001-4632.2004.02.017
|
[140] |
赵雪芹, 王文健, 郭俊, 等. 广深线PD3与U71Mn钢轨斜裂纹形成特性分析[J]. 润滑与密封, 2007, 32(3): 35-37. doi: 10.3969/j.issn.0254-0150.2007.03.011
ZHAO Xue-qin, WANG Wen-jian, GUO Jun, et al. An investigation on formation characteristic of oblique crack of PD3 and U71Mn rail in Guangzhou-Shenzhen Railway[J]. Lubrication Engineering, 2007, 32(3): 35-37. (in Chinese) doi: 10.3969/j.issn.0254-0150.2007.03.011
|
[141] |
钟雯. 钢轨的损伤机理研究[D]. 成都: 西南交通大学, 2011.
ZHONG Wen. Experimental investigation of rail damnification mechanism[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese)
|
[142] |
熊嘉阳. 钢轨斜裂纹形成机理研究[D]. 成都: 西南交通大学, 2006.
XIONG Jia-yang. Study on the formative mechanism of rail oblique crack[D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese)
|
[143] |
郭俊. 轮轨滚动接触疲劳损伤机理研究[D]. 成都: 西南交通大学, 2006.
GUO Jun. Study on mechanism of wheel-rail rolling contact fatigue and damage[D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese)
|
[144] |
周宇, 黄旭炜, 王树国, 等. 考虑轨道几何不平顺的钢轨裂纹萌生与磨耗共存预测[J]. 同济大学学报(自然科学版), 2019, 47(11): 1600-1608. doi: 10.11908/j.issn.0253-374x.2019.11.009
ZHOU Yu, HUANG Xun-wei, WANG Shu-guo, et al. Prediction of rail rolling contact fatigue crack initiation and wear growth considering track geometry irregularity[J]. Journal of Tongji University(Natural Science), 2019, 47(11): 1600-1608. (in Chinese) doi: 10.11908/j.issn.0253-374x.2019.11.009
|
[145] |
叶都玮. 城市轨道交通车辆车轮踏面缺陷产生的机理和预防措施[J]. 城市轨道交通研究, 2011, 14(1): 106-109. doi: 10.3969/j.issn.1007-869X.2011.01.025
YE Du-wei. Mechanism of urban mass transits wheel tread defects and preventive measures[J]. Urban Mass Transit, 2011, 14(1): 106-109. (in Chinese) doi: 10.3969/j.issn.1007-869X.2011.01.025
|
[146] |
陈佳明, 赵鑫, 蔡宇天, 等. 地铁车轮轮缘根部滚动接触疲劳机理研究[J]. 铁道科学与工程学报, 2020, 17(9): 2372-2380. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202009024.htm
CHEN Jia-ming, ZHAO Xin, CAI Yu-tian, et al. Investigation on rolling contact fatigue mechanism of metro wheel flange root[J]. Journal of Railway Science and Engineering, 2020, 17(9): 2372-2380. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202009024.htm
|
[147] |
温邦. 地铁车轮踏面滚动接触疲劳形成机理及对策研究[D]. 成都: 西南交通大学, 2017.
WEN Bang. Study on mechanism and countermeasure of rolling contact fatigue of metro tread[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
|
[148] |
梁喜仁, 陶功权, 陆文教, 等. 地铁钢轨滚动接触疲劳损伤研究[J]. 机械工程学报, 2019, 55(2): 147-155. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201902017.htm
LIANG Xi-ren, TAO Gong-quan, LU Wen-jiao, et al. Study on the rail rolling contact fatigue of subway[J]. Journal of Mechanical Engineering, 2019, 55(2): 147-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201902017.htm
|
[149] |
张合吉, 何泽寒, 刘建桥, 等. 地铁异常磨耗车轮与辙叉接触分析[J]. 机械工程学报, 2018, 54(4): 117-123. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804019.htm
ZHANG He-ji, HE Ze-han, LIU Jian-qiao, et al. Analysis of contact between frog and metro wheel tread with abnormal wear[J]. Journal of Mechanical Engineering, 2018, 54(4): 117-123. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804019.htm
|
[150] |
ZHAI Wan-ming, JIN Xue-song, WEN Zen-feng, et al. Wear problems of high-speed wheel/rail systems: observations, causes, and countermeasures in China[J]. Applied Mechanics Reviews, 2020, 72(1): 060801.
|