Citation: | WU Sheng-chuan, REN Xin-yan, KANG Guo-zheng, MA Li-jun, ZHANG Xiao-jun, QIAN Kun-cai, TENG Wan-xiu. Progress and challenge on fatigue resistance assessment of railway vehicle components[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 81-114. doi: 10.19818/j.cnki.1671-1637.2021.01.004 |
[1] |
周平宇. 高速动车组车轴材料及疲劳设计方法[J]. 铁道车辆, 2009, 47(2): 29-31. doi: 10.3969/j.issn.1002-7602.2009.02.011
ZHOU Ping-yu. The axle material and fatigue design method for high speed multiple units[J]. Railway Vehicle, 2009, 47(2): 29-31. (in Chinese) doi: 10.3969/j.issn.1002-7602.2009.02.011
|
[2] |
朱静, 顾家琳, 周惠华, 等. 高速列车空心车轴国产化的选材和试制[J]. 中国铁道科学, 2015, 36(2): 60-67. doi: 10.3969/j.issn.1001-4632.2015.02.09
ZHU Jing, GU Jia-lin, ZHOU Hui-hua, et al. Material selection and trial manufacture for localization of hollow axle for high speed train[J]. China Railway Science, 2015, 36(2): 60-67. (in Chinese) doi: 10.3969/j.issn.1001-4632.2015.02.09
|
[3] |
徐忠伟, 吴圣川, 段浩, 等. 考虑压装和实测动应力的含缺陷空心车轴剩余寿命评估[J]. 中国科学: 技术科学, 2017, 47(6): 656-665. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201706008.htm
XU Zhong-wei, WU Sheng-chuan, DUAN Hao, et al. Fatigue crack growth life prediction of railway hollow axis with flaws under press fitting and measured dynamic stress spectrum[J]. Scientia Sinica: Technologica, 2017, 47(6): 656-665. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201706008.htm
|
[4] |
周素霞. 高速列车空心车轴损伤容限理论与方法研究[D]. 北京: 北京交通大学, 2010.
ZHOU Su-xia. Theory and method research on damage tolerance of the hollow axles of high speed trains[D]. Beijing: Beijing Jiaotong University, 2010. (in Chinese)
|
[5] |
ZERBST U, BERETTA S, KÖHLER G, et al. Safe life and damage tolerance aspects of railway axles—a review[J]. Engineering Fracture Mechanics, 2013, 98(1): 214-271. http://www.sciencedirect.com/science/article/pii/S0013794412003918
|
[6] |
沈彩瑜. 铁道车辆转向架构架疲劳强度研究[D]. 成都: 西南交通大学, 2018.
SHEN Cai-yu. Fatigue strength analysis of the welded bogie frame for railway vehicle[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
|
[7] |
LU Yao-hui, XIANG Peng-lin, DONG Ping-sha, et al. Analysis of the effects of vibration modes on fatigue damage in high-speed train bogie frames[J]. Engineering Failure Analysis, 2018, 89: 222-241. doi: 10.1016/j.engfailanal.2018.02.025
|
[8] |
孙璐. 高速列车转向架构架长期服役应力谱及损伤演化规律研究[D]. 北京: 北京交通大学, 2016.
SUN Lu. Study on stress spectrum and damage evolution law of the long-term service for high-speed EMU's bogie frame[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)
|
[9] |
段浩. 铁道车辆转向架构架疲劳寿命及损伤容限评价[D]. 成都: 西南交通大学, 2018.
DUAN Hao. Fatigue life and damage tolerance assessment on bogie frame of railway vehicles[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
|
[10] |
李丛珊. 中国标准动车组动车转向架构架结构疲劳可靠性研究[D]. 北京: 北京交通大学, 2018.
LI Cong-shan. Structural fatigue reliability research on motor bogie frame of China standard EMUs[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
|
[11] |
SCHIJVE J. Fatigue of Structures and Materials[M]. Dordrecht: Kluwer Academic Publishers, 2009.
|
[12] |
SURESH S. Fatigue of Materials[M]. Cambridge: Cambridge University Press, 1998.
|
[13] |
刘霞, 王长生. 车轴磁粉探伤机夹持装置的分析与改进[J]. 中国铁路, 2012(10): 74-76. doi: 10.3969/j.issn.1001-683X.2012.10.019
LIU Xia, WANG Chang-sheng. Improved holding device of railway axle used magnetic particle testing[J]. Chinese Railways, 2012(10): 74-76. (in Chinese) doi: 10.3969/j.issn.1001-683X.2012.10.019
|
[14] |
蔡晓野. HXD3C型机车车轴磁粉检测磁痕显示分析[J]. 无损探伤, 2018, 42(2): 40-42. https://www.cnki.com.cn/Article/CJFDTOTAL-WSTS201802012.htm
CAI Xiao-ye. Display analysis on magnetic mark of magnetic particle testing on HXD3C locomotive axles[J]. Nondestructive Testing Technology, 2018, 42(2): 40-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSTS201802012.htm
|
[15] |
丁然, 李强. 基于漏探概率的车轴探伤周期制定方法[J]. 中国铁道科学, 2017, 38(4): 101-106. doi: 10.3969/j.issn.1001-4632.2017.04.14
DING Ran, LI Qiang. Method for detecting flaw detection period of axle based on missed detection probability[J]. China Railway Science, 2017, 38(4): 101-106. (in Chinese) doi: 10.3969/j.issn.1001-4632.2017.04.14
|
[16] |
彭朝勇, 高晓蓉, 王艾. 车轴压装部相控阵超声波探伤的各向异性扩散去燥改进算法[J]. 中国铁道科学, 2017, 38(3): 77-82. doi: 10.3969/j.issn.1001-4632.2017.03.11
PENG Chao-yong, GAO Xiao-rong, WANG Ai. An improved anisotropic diffusion denoising algorithm for phased array ultrasonic flaw detection of axle press-fit area[J]. China Railway Science, 2017, 38(3): 77-82. (in Chinese) doi: 10.3969/j.issn.1001-4632.2017.03.11
|
[17] |
汤立新. 一种空心车轴超声自动探伤图像合成显示方法[J]. 控制与信息技术, 2018(5): 51-55, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-BLJS201805012.htm
TANG Li-xin. A combined signal display method for hollow axle automated ultrasonic test system[J]. Control and Information Technology, 2018(5): 51-55, 61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BLJS201805012.htm
|
[18] |
刘志勇, 彭朝勇. 一种基于轴端耦合的实心车轴相控阵超声波探伤方法[J]. 机车电传动, 2018(2): 108-110.
LIU Zhi-yong, PENG Chao-yong. A method for solid axle flaw inspection based on axle end coupling by phased array ultrasonic technology[J]. Electric Drive for Locomotives, 2018(2): 108-110. (in Chinese)
|
[19] |
周庆祥, 傅晔, 詹发福, 等. 阵列涡流技术在车轴在役检测中的应用研究[J]. 金属加工(冷加工), 2016(增1): 399-400. https://www.cnki.com.cn/Article/CJFDTOTAL-JXGR2016S1130.htm
ZHOU Qing-xiang, FU Ye, ZHAN Fa-fu, et al. Applications of eddy current arrays to in-service axle detection[J]. Metal Processing (Cold Working), 2016(S1): 399-400. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXGR2016S1130.htm
|
[20] |
杜寅飞. 基于脉冲涡流检测技术的车轴探伤系统的研究[D]. 天津: 天津大学, 2011.
DU Yin-fei. Research on semi-axle testing system based on pulsed eddy current testing technology[D]. Tianjin: Tianjin University, 2011. (in Chinese)
|
[21] |
SUN Zhen-guo, CAI Dong, ZOU Cheng, et al. A flexible arrayed eddy current sensor for inspection of hollow axle inner surfaces[J]. Sensors, 2016, 16(7): 952. doi: 10.3390/s16070952
|
[22] |
兰晓峰, 张渝. 重载铁路钢轨相控阵探伤系统研究[J]. 仪器仪表学报, 2019, 40(12): 47-55. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201912006.htm
LAN Xiao-feng, ZHANG YU. Research on heavy haul railway inspection system based on the phased array technique[J]. Chinese Journal of Scientific Instrument, 2019, 40(12): 47-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201912006.htm
|
[23] |
师睿鑫. 基于图像处理的轮轴探伤系统对铁路安全的控制研究[J]. 中国安全科学学报, 2018, 28(增1): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK2018S1005.htm
SHI Rui-xin. Research on safety foundation control of wheel shaft flaw detection system based on image processing[J]. China Safety Science Journal, 2018, 28(S1): 22-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK2018S1005.htm
|
[24] |
MAKINO T, SAKAI H, KOZUKA C, et al. Overview of fatigue damage evaluation rule for railway axles in Japan and fatigue property of railway axle made of medium carbon steel[J]. International Journal of Fatigue, 2020, 132: 105361. doi: 10.1016/j.ijfatigue.2019.105361
|
[25] |
LI Cun-hai, WU Sheng-chuan, ZHANG Jin-yuan, et al. Determination of the fatigue P-S-N curves—a critical review and improved backward statistical inference method[J]. International Journal of Fatigue, 2020, 139: 105789. doi: 10.1016/j.ijfatigue.2020.105789
|
[26] |
WU S C, LI C H, LUO Y, et al. A uniaxial tensile behavior based fatigue crack growth model[J]. International Journal of Fatigue, 2020, 131: 105324. doi: 10.1016/j.ijfatigue.2019.105324
|
[27] |
LUO Yan, WU Sheng-chuan, ZHAO Xin, et al. Three-dimensional correlation of damage criticality with the defect size and lifetime of externally impacted 25CrMo4 steel[J]. Materials and Design, 2020, 195: 109001. doi: 10.1016/j.matdes.2020.109001
|
[28] |
HU Y N, WU S C, WU Z K, et al. A new approach to correlate the defect population with the fatigue life of selective laser melted Ti-6Al-4V alloy[J]. International Journal of Fatigue, 2020, 136: 105584. doi: 10.1016/j.ijfatigue.2020.105584
|
[29] |
WU S C, XU Z W, LIU Y X, et al. On the residual life assessment of high-speed railway axles due to induction hardening[J]. International Journal of Rail Transportation, 2018, 6(4): 218-232. doi: 10.1080/23248378.2018.1427008
|
[30] |
BATHIAS C. There is no infinite fatigue life in metallic materials[J]. Fatigue and Fracture of Engineering Materials and Structures, 1999, 22(7): 559-565. doi: 10.1046/j.1460-2695.1999.00183.x
|
[31] |
SAKAI T, SATO Y, OGUMA N. Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue[J]. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25(8/9): 765-773. doi: 10.1046/j.1460-2695.2002.00574.x
|
[32] |
袁元豪. 日本和欧洲铁路车轴标准的比较[J]. 铁道技术监督, 2013, 41(9): 4-7. doi: 10.3969/j.issn.1006-9178.2013.09.002
YUAN Yuan-hao. Comparison of railway axle standards between Japan and Europe[J]. Railway Quality Control, 2013, 41(9): 4-7. (in Chinese) doi: 10.3969/j.issn.1006-9178.2013.09.002
|
[33] |
MAKINO T, KATO T, HIRAKAWA K. Review of the fatigue damage tolerance of high-speed railway axles in Japan[J]. Engineering Fracture Mechanics, 2011, 78: 810-825. doi: 10.1016/j.engfracmech.2009.12.013
|
[34] |
郑修麟, 王泓, 鄢君辉, 等. 材料疲劳理论与工程应用[M]. 北京: 科学出版社, 2013.
ZHENG Xiu-lin, WANG Hong, YAN Jun-hui, et al. Fatigue Thoery and Engineering Applications of Materials[M]. Beijing: Science Press, 2013. (in Chinese)
|
[35] |
李守新, 翁宇庆, 惠卫军, 等. 高强度钢超高周疲劳性能——非金属夹杂物的影响[M]. 北京: 冶金工业出版社, 2010.
LI Shou-xin, WENG Yu-qing, HUI Wei-jun, et al. Very High Cycle Fatigue Properties of High Strength Steels—Effects of Nonmetallic Inclusions[M]. Beijing: Metallurgical Industry Press, 2010. (in Chinese)
|
[36] |
BATHIAS C, PINEAU A. Fatigue of Materials and Structures[M]. Hoboken: Wiley, 2013.
|
[37] |
SONSINO C M. Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety[J]. International Journal of Fatigue, 2007, 29(12): 2246-2258. doi: 10.1016/j.ijfatigue.2006.11.015
|
[38] |
洪友士, 孙成奇, 刘小龙. 合金材料超高周疲劳的机理与模型综述[J]. 力学进展, 2018, 48: 201801. doi: 10.6052/1000-0992-17-002
HONG You-shi, SUN Cheng-qi, LIU Xiao-long. A review on mechanism and models for very-high-cycle fatigue of metallic materials[J]. Advances in Mechanics, 2018, 48: 201801. (in Chinese) doi: 10.6052/1000-0992-17-002
|
[39] |
张继旺. 高速列车车轴钢超长寿命疲劳可靠性及强度改善方法[D]. 成都: 西南交通大学, 2011.
ZHANG Ji-wang. Fatigue reliability behaviors of high-speed railway axle steel in very high cycle regime and methods for fatigue strengthen improvement[D]. Chengdu: Southwest Jiaotong University, 2011. (in Chinese)
|
[40] |
钟群鹏, 周煜, 张峥, 等. 裂纹学[M]. 北京: 高等教育出版社, 2014.
ZHONG Qun-peng, ZHOU Yu, ZHANG Zheng, et al. Cracking[M]. Beijing: High Education Press, 2014. (in Chinese)
|
[41] |
杨新华, 陈传尧. 疲劳与断裂(第二版)[M]. 武汉: 华中科技大学出版社, 2002.
YANG Xin-hua, CHEN Chuan-yao. Fatigue and Fracture (2nd edition)[M]. Wuhan: Huazhong University of Science and Technology Press, 2002. (in Chinese)
|
[42] |
BERETTA S, REGAZZI D. Probabilistic fatigue assessment for railway axles and derivation of a simple format for damage calculations[J]. International Journal of Fatigue, 2016, 86: 13-23. doi: 10.1016/j.ijfatigue.2015.08.010
|
[43] |
赵云生. 日本新干线车轴淬火技术应用综述[J]. 国外铁道车辆, 2011, 48(5): 9-12. doi: 10.3969/j.issn.1002-7610.2011.05.002
ZHAO Yun-sheng. Survey of application of the quenching technology of axles for Shinkansen in Japan[J]. Foreign Railway Vehicle, 2011, 48(5): 9-12. (in Chinese) doi: 10.3969/j.issn.1002-7610.2011.05.002
|
[44] |
HIROMICHI I, MAKOTO A, YASUO S, et al. Fracture mechanics evalution of fatigue tests using Shinkansen vehicle axles with artificial flaws created on their wheelsets[J]. The Japan Society of Mechanical Engineers, 1996, 62: 2527-2533. doi: 10.1299/kikaia.62.2527
|
[45] |
邓铁松, 吴磊, 凌亮, 等. 轴箱内置与外置直线电机地铁车辆曲线通过性能对比[J]. 计算机辅助工程, 2015, 24(1): 12-17, 21. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201501003.htm
DENG Tie-song, WU Lei, LING Liang, et al. Comparison of curving performance of linear induction motor metro vehicles with inside and outside axle boxes[J]. Computer Aided Engineering, 2015, 24(1): 12-17, 21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201501003.htm
|
[46] |
刘志远, 张文康, 高纯友, 等. 美国波士顿地铁轴箱内置式转向架结构设计[J]. 城市轨道交通研究, 2019(3): 162-165. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201903038.htm
LIU Zhi-yuan, ZHANG Wen-kang, GAO Chun-you, et al. Development of bogie with inboard bearing for Boston Metro in America[J]. Urban Mass Transit, 2019(3): 162-165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201903038.htm
|
[47] |
李国栋, 王文华, 薛文根, 等. 内置轴箱式转向架轴箱轴承定位挡圈失效分析[J]. 轴箱, 2019(9): 6-8. https://www.cnki.com.cn/Article/CJFDTOTAL-CUCW201909002.htm
LI Guo-dong, WANG Wen-hua, XUE Wen-gen, et al. Failure analysis on positioning retaining rings of axle box bearings for built-in axle box type bogie[J]. Bearing, 2019(9): 6-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CUCW201909002.htm
|
[48] |
王志明, 陈晓峰, 吴才香, 等. 轴箱内置式车辆走行部焊接构架及其疲劳强度分析[J]. 装备制造技术, 2019(1): 79-82. doi: 10.3969/j.issn.1672-545X.2019.01.020
WANG Zhi-ming, CHEN Xiao-feng, WU Cai-xiang, et al. Welded frame and fatigue strength analysis of running part of axle box built-in vehicle[J]. Equipment Manufacturing Technology, 2019(1): 79-82. (in Chinese) doi: 10.3969/j.issn.1672-545X.2019.01.020
|
[49] |
WU S C, LIU Y X, LI C H, et al. On the fatigue performance and residual life of intercity railway axles with inside axle boxes[J]. Engineering Fracture Mechanics, 2018, 197: 176-191. doi: 10.1016/j.engfracmech.2018.04.046
|
[50] |
刘宇轩. 内置轴箱式铁路车轴疲劳强度及损伤容限评价[D]. 成都: 西南交通大学, 2019.
LIU Yu-xuan. Fatigue strength and damage tolerance assessment on railway axle with inside axle boxes[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
|
[51] |
刘宇轩, 吴圣川, 李存海, 等. 轴箱内置型铁路车轴疲劳性能与寿命评估[J]. 交通运输工程学报, 2019, 19(3): 100-108. doi: 10.3969/j.issn.1671-1637.2019.03.011
LIU Yu-xuan, WU Sheng-chuan, LI Cun-hai, et al. Fatigue performance and life assessment of railway axle with inside axle box[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 100-108. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.03.011
|
[52] |
POKORN AY'G P, DLH AY'G P, PODUŠKA J, et al. Influence of heat treatment-induced residual stress on residual fatigue life of railway axles[J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102732. doi: 10.1016/j.tafmec.2020.102732
|
[53] |
REGAZZI D, BERETTA S, CARBONI M. An investigation about the influence of deep rolling on fatigue crack growth in railway axles made of a medium strength steel[J]. Engineering Fracture Mechanics, 2014, 131: 587-601. doi: 10.1016/j.engfracmech.2014.09.016
|
[54] |
MAKOTO A, HIROMICHI I. Reliability analysis of Shinkansen vehicle axle using probabilistic fracture mechanics[J]. The Japan Society of Mechanical Engineers, 1994, 60: 46-51. doi: 10.1299/kikaia.60.46
|
[55] |
MAKOTOA. Bayesian analysis for the results of fatigue test using full-scale models to obtain the accurate failure probabilities of the Shinkansen vehicle axle[J]. Reliability Engineering and System Safety, 2002, 75: 321-332. doi: 10.1016/S0951-8320(01)00129-6
|
[56] |
YAMAMOTO M, MAKINO K, ISHIDUKA H. Comparison of crack growth behaviour between full-scale railway axle and scaled specimen[J]. International Journal of Fatigue, 2016, 92: 159-165. doi: 10.1016/j.ijfatigue.2016.07.001
|
[57] |
NONAKA I, SETOWAKI S, ICHIKAWA Y. Effect of load frequency on high cycle fatigue strength of bullet train axle steel[J]. International Journal of Fatigue, 2014, 60: 43-47. doi: 10.1016/j.ijfatigue.2013.08.020
|
[58] |
MAKINO K, BIWA S. Influence of axle-wheel interface on ultrasonic testing of fatigue cracks in wheelset[J]. Ultrasonics, 2013, 53: 239-248. doi: 10.1016/j.ultras.2012.06.007
|
[59] |
YAMAMOTO M, MAKINO K, ISHIDUKA H. Experimental validation of railway axle fatigue crack growth using operational loading[J]. Engineering Fracture Mechanics, 2019, 213: 142-152. doi: 10.1016/j.engfracmech.2019.04.001
|
[60] |
HIROMICHI I, MASANOBU K, CHU S, et al. Evaluation of fatigue crack propagation property on the wheelseat of normalized axles for narrow gauge line vehicles[J]. Journal of the Society of Materials Science Japan, 2006, 55(6): 550-557. doi: 10.2472/jsms.55.550
|
[61] |
POKORNÝ P, HUTAŘ P, NÁHLÍK L. Residual fatigue lifetime estimation of railway axles for various loading spectra[J]. Theoretical and Applied Fracture Mechanics, 2016, 82: 25-32. doi: 10.1016/j.tafmec.2015.06.007
|
[62] |
RIEGER M, MOSER C, BRUNNHOFER P, et al. Fatigue crack growth in full-scale railway axles-influence of secondary stresses and load sequence effects[J]. International Journal of Fatigue, 2020, 132: 105360. doi: 10.1016/j.ijfatigue.2019.105360
|
[63] |
MAIERHOFER J, GANSER HP, SIMUNEK D, et al. Fatigue crack growth model including load sequence effects-model development and calibration for railway axle steels[J]. International Journal of Fatigue, 2020, 132: 105377. doi: 10.1016/j.ijfatigue.2019.105377
|
[64] |
HANNEMANN R, KOSTER P, SANDER M. Fatigue crack growth in wheelset axles under bending and torsional loading[J]. International Journal of Fatigue, 2019, 118: 262-270. doi: 10.1016/j.ijfatigue.2018.07.038
|
[65] |
BERETTA S, CARBONI M, REGAZZI D. Load interaction effects in propagation lifetime and inspections of railway axles[J]. International Journal of Fatigue, 2016, 91: 423-433. doi: 10.1016/j.ijfatigue.2016.03.009
|
[66] |
AUERSCH L. Realistic axle load spectra from ground vibrations measured near railway lines[J]. International Journal of Rail Transportation, 2015, 3(4): 180-200. doi: 10.1080/23248378.2015.1076624
|
[67] |
SMITH R A, HILLMANSEN S. A brief historical overview of the fatigue of railway axles[J]. Journal of Rail and Rapid Transit, 2004, 218(4): 267-277. doi: 10.1243/0954409043125932
|
[68] |
CARBONI M, BERETTA S, MADIA M. Analysis of crack growth at R=-1 under variable amplitude loading on a steel for railway axles[J]. Journal of ASTM International, 2008, 5(7): JAI101648. doi: 10.1520/JAI101648
|
[69] |
SANDER M, RICHARD H A. Investigations on fatigue crack growth under variable amplitude loading in wheelset axles[J]. Engineering Fracture Mechanics, 2011, 78: 754-763. doi: 10.1016/j.engfracmech.2010.05.001
|
[70] |
WATSON A S, TIMMIS K. A method of estimating railway axle stress spectra[J]. Engineering Fracture Mechanics, 2011, 78(5): 836-847. doi: 10.1016/j.engfracmech.2009.12.001
|
[71] |
CERVELLO S. Fatigue properties of railway axles: new results of full-scale specimens from Euraxles project[J]. International Journal of Fatigue, 2016, 86: 2-12. doi: 10.1016/j.ijfatigue.2015.11.028
|
[72] |
FOLETTI S, BERETTA S, GURER G. Defect acceptability under full-scale fretting fatigue tests for railway axles[J]. International Journal of Fatigue, 2016, 86: 34-43. doi: 10.1016/j.ijfatigue.2015.08.023
|
[73] |
GOMEZ M J, CASTEJON C, GARCIA-PRADA J C. New stopping criteria for crack detection during fatigue tests of railway axles[J]. Engineering Failure Analysis, 2015, 56: 530-537. doi: 10.1016/j.engfailanal.2014.10.018
|
[74] |
LUKE M, VARFOLOMEEV I, LVTKEPOHL K, et al. Fatigue crack growth in railway axles: assessment concept and validation tests[J]. Engineering Fracture Mechanics, 2011, 78(5): 714-730. doi: 10.1016/j.engfracmech.2010.11.024
|
[75] |
FILIPPINI M, LUKE M, VARFOLOMEEV I. Fatigue strength assessment of railway axles considering small-scale tests and damage calculations[J]. Procedia Structural Integrity, 2017, 4: 11-18. doi: 10.1016/j.prostr.2017.07.013
|
[76] |
CARBONI M, BERETTA S. Effect of probability of detection upon the definition of inspection intervals for railway axles[J]. Journal of Rail and Rapid Transit, 2007, 221: 409-417. doi: 10.1243/09544097JRRT132
|
[77] |
MÄDLER K, GEBURTIG T, ULLRICH D. An experimental approach to determining the residual lifetimes of wheelset axles on a full-scale wheel-rail roller test rig[J]. International Journal of Fatigue, 2016, 86: 58-63. doi: 10.1016/j.ijfatigue.2015.06.016
|
[78] |
TRAUPE M, JENNE S, LVTKEPOHL K, et al. Experimental validation of inspection intervals for railway axles accompanying the engineering process[J]. International Journal of Fatigue, 2016, 86: 44-51. doi: 10.1016/j.ijfatigue.2015.09.020
|
[79] |
KAPPES W, HENTSCHEL D, OELSCHLAGELT. Potential improvements of the presently applied in-service inspection of wheelset axles[J]. International Journal of Fatigue, 2016, 86: 64-76. doi: 10.1016/j.ijfatigue.2015.08.014
|
[80] |
FAJKOS R, ZIMA R, STRNADEL B. Fatigue limit of induction hardened railway axles[J]. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38: 1255-1264. doi: 10.1111/ffe.12337
|
[81] |
HASSANI-GANGARAJ S M, CARBONI M, GUAGLIANO M. Finite element approach toward an advanced understanding of deep rolling induced residual stresses, and an application to railway axles[J]. Materials and Design, 2015, 83: 689-703. doi: 10.1016/j.matdes.2015.06.026
|
[82] |
REGAZZI D, CANTINI S, CERVELLO S, et al. Improving fatigue resistance of railway axles by cold rolling: process optimisation and new experimental evidences[J]. International Journal of Fatigue, 2020, 137: 105603. doi: 10.1016/j.ijfatigue.2020.105603
|
[83] |
BERETTA S, CARBONI M, FIORE G, et al. Corrosion- fatigue of A1N railway axle steel exposed to rainwater[J]. International Journal of Fatigue, 2010, 32: 952-961. doi: 10.1016/j.ijfatigue.2009.08.003
|
[84] |
BERETTA S, CARBONI M, CONTE A L, et al. An investigation of the effects of corrosion on the fatigue strength of AlN axle steel[J]. Journal of Rail and Rapid Transit, 2008, 222: 129-143. doi: 10.1243/09544097JRRT157
|
[85] |
MANERHOFER J, SIMUNEK D, GANSER H P, et al. Oxide induced crack closure in the near threshold regime The effect of oxide debris release[J]. International Journal of Fatigue, 2018, 117: 21-26. doi: 10.1016/j.ijfatigue.2018.07.021
|
[86] |
VOJTECK T, POKORNY P, KUBENA I, et al. Quantitative dependence of oxide-induced crack closure on air humidity for railway axle steel[J]. International Journal of Fatigue, 2019, 123: 213-224. doi: 10.1016/j.ijfatigue.2019.02.019
|
[87] |
SADANANDA K, VASUDEVAN A K. Analysis of pit to crack transition under corrosion fatigue and the safe-life approach using the modified Kitagawa-Takahashi diagram[J]. International Journal of Fatigue, 2020, 134: 105471. doi: 10.1016/j.ijfatigue.2020.105471
|
[88] |
POKORNY P, VOJTECK T, NAHLIK L, et al. Crack closure in near-threshold fatigue crack propagation in railway axle steel EA4T[J]. Engineering Fracture Mechanics, 2017, 185: 2-19. doi: 10.1016/j.engfracmech.2017.02.013
|
[89] |
BERETTA S, LO CONTE A, RUDLIN J, et al. From atmospheric corrosive attack to crack propagation for A1N railway axles steel under fatigue[J]. Engineering Failure Analysis, 2015, 47: 252-264. doi: 10.1016/j.engfailanal.2014.07.026
|
[90] |
SIMUNEK D, LEITNER M, RIEGER M, et al. Fatigue crack growth in railway axle specimens—transferability and model validation[J]. International Journal of Fatigue, 2020, 137: 105603. doi: 10.1016/j.ijfatigue.2020.105603
|
[91] |
GÄNSER H P, MAIERHOFER J, TICHY R, et al. Damage tolerance of railway axles-the issue of transferability revisited[J]. International Journal of Fatigue, 2016, 86: 52-57. doi: 10.1016/j.ijfatigue.2015.07.019
|
[92] |
DE FREITAS M, FRANCOIS D. Analysis of fatigue crack growth in rotary bend specimens and railway axles[J]. Fatigue and Fracture of Engineering Materials and Structures, 1995, 18(2): 171-178. doi: 10.1111/j.1460-2695.1995.tb00152.x
|
[93] |
VARFOLOMEEV I, LUKE M, BURDACK M. Effect of specimen geometry on fatigue crack growth rates for the railway axle material EA4T[J]. Engineering Fracture Mechanics, 2011, 78: 742-753. doi: 10.1016/j.engfracmech.2010.11.011
|
[94] |
刘志明, 孙守光, 缪龙秀. 车轴裂纹扩展寿命的分析与计算方法[J]. 中国铁道科学, 2008, 29(3): 89-94. doi: 10.3321/j.issn:1001-4632.2008.03.017
LIU Zhi-ming, SUN Shou-guang, MIAO Long-xiu. Analysis and calculation method of axle crack growth life[J]. China Railway Science, 2008, 29(3): 89-94. (in Chinese) doi: 10.3321/j.issn:1001-4632.2008.03.017
|
[95] |
张俊清. 高速列车空心车轴表面裂纹应力强度因子研究[D]. 北京: 北京交通大学, 2011.
ZHANG Jun-qing. Research on stress intensity factor of surface crack of high-speed train hollow axle[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese)
|
[96] |
周素霞, 李福胜, 谢基龙, 等. 基于损伤容限的动车组车轴实测载荷谱等效应力评价[J]. 机械工程学报, 2015, 51(8): 131-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201508019.htm
ZHOU Su-xia, LI Fu-sheng, XIE Ji-long, et al. Equivalent stress evaluation of the load spectrum measured on the EMU axle based on damage tolerance[J]. Journal of Mechanical Engineering, 2015, 51(8): 131-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201508019.htm
|
[97] |
ZHAO Yong-xiang, HE Chao-ming, YANG Bing, et al. Probabilistic models for long fatigue crack growth rates of LZ50 axle steel[J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(8): 1093-1099. doi: 10.1007/BF02466423
|
[98] |
包陈, 蔡力勋. LZ50车轴钢疲劳裂纹扩展试验研究[J]. 实验室研究与探索, 2007, 26(11): 255-258. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY200711088.htm
BAO Chen, CAI Li-xun. Experimental study on fatigue crack propagation of LZ50 axle steels[J]. Research and Exploration in Laboratory, 2007, 26(11): 255-258. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYSY200711088.htm
|
[99] |
杨冰, 赵永翔. 表面滚压对LZ50车轴钢疲劳短裂纹行为的影响[J]. 金属学报, 2014, 48(8): 922-928. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201208005.htm
YANG Bing, ZHAO Yong-xiang. Influence of surface rolling on short fatigue crack behavior for LZ50 axle steel[J]. Acta Metallurgica Sinica, 2014, 48(8): 922-928. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB201208005.htm
|
[100] |
赵永翔, 何忠. LZ50车轴钢的疲劳起裂阈值及强度[J]. 铁道学报, 2012, 34(11): 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201211006.htm
ZHAO Yong-xiang, HE Zhong. Fatigue cracking threshold and strength of railway LZ50 axle steel[J]. Journal of the China Railway Society, 2012, 34(11): 37-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201211006.htm
|
[101] |
WU S C, ZHANG S Q, XU Z W, et al. Cyclic plastic strain based damage tolerance for railway axles in China[J]. International Journal of Fatigue, 2016, 93: 64-70. doi: 10.1016/j.ijfatigue.2016.08.006
|
[102] |
马利军. 断裂力学的含缺陷车轴服役寿命评估方法研究[D]. 北京: 北京交通大学, 2016.
MA Li-jun. Study on service life evaluation of railway axle with flaws based on fracture mechanics[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)
|
[103] |
林浩博. 高速动车组S38C车轴疲劳裂纹扩展特性及可靠性研究[D]. 北京: 北京交通大学, 2017.
LIN Hao-bo. Studies on the fatigue crack propagation characteristics and reliability of EMU high speed S38C axle[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese)
|
[104] |
吴圣川, 李存海, 张文, 等. 金属材料疲劳裂纹扩展机制与模型的研究进展[J]. 固体力学学报, 2019, 40(6): 489-538. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201906001.htm
WU Sheng-chuan, LI Cun-hai, ZHANG Wen, et al. Recent research progress on mechanisms and models of fatigue crack growth for metallic materials[J]. Chinese Journal of Solid Mechanics, 2019, 40(6): 489-538. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201906001.htm
|
[105] |
王玉光, 吴圣川, 李忠文, 等. 一种基于低周疲劳行为的含缺陷车轴剩余寿命模型[J]. 铁道学报, 2018, 40(11): 27-32. doi: 10.3969/j.issn.1001-8360.2018.11.004
WANG Yu-guang, WU Sheng-chuan, LI Zhong-wen, et al. A low cycle fatigue characteristics based residual life prediction model for railway axles with flaws[J]. Journal of the China Railway Socienty, 2018, 40(11): 27-32. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.11.004
|
[106] |
WU S C, XU Z W, YU C, et al. A physically short fatigue crack growth approach based on low cycle fatigue properties[J]. International Journal of Fatigue, 2017, 103(6): 185-195. http://www.sciencedirect.com/science/article/pii/S0142112317302104
|
[107] |
SHI K K, CAI L X, BAO C, et al. Structural fatigue crack growth on a representative volume element under cyclic strain behavior[J]. International Journal of Fatigue, 2015, 74(5): 1-6. http://www.sciencedirect.com/science/article/pii/S014211231400320X
|
[108] |
SHI K K, CAI L X, BAO C, et al. Prediction of fatigue crack growth based on low cycle fatigue properties[J]. International Journal of Fatigue, 2014, 61(4): 220-225. http://www.sciencedirect.com/science/article/pii/S0142112313003228
|
[109] |
WU S C, LUO Y, SHEN Z, et al. Collaborative crack initiation mechanism of 25CrMo4 alloy steels subjected to foreign object damages[J]. Engineering Fracture Mechanics, 2020, 225: 106844. doi: 10.1016/j.engfracmech.2019.106844
|
[110] |
吴圣川, 徐忠伟, 康国政, 等. 外物损伤对25CrMo4合金车轴钢疲劳性能的影响[J]. 西南交通大学学报, 2020, 55(3): 658-663. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202003026.htm
WU Sheng-chuan, XU Zhong-wei, KANG Guo-zheng, et al. Influences of foreign object damage on fatigue strength of 25CrMo4 axle alloy steel[J]. Journal of Southwest Jiaotong University, 2020, 55(3): 658-633. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202003026.htm
|
[111] |
LUO Y, WU S C, ZHAO X, et al. Three-dimensional correlation of damage criticality with the defect size and lifetime of externally impacted 25CrMo4 steel[J]. Materials and Design, 2020, 195: 109001. doi: 10.1016/j.matdes.2020.109001
|
[112] |
XU Z W, WU S C, WANG X S. Fatigue evaluation for high-speed railway axles with surface scratch[J]. International Journal of Fatigue, 2019, 123: 79-86. doi: 10.1016/j.ijfatigue.2019.02.016
|
[113] |
WU S C, XU Z W, KANG G Z, et al. Probabilistic fatigue assessment for high-speed railway axles due to foreign object damages[J]. International Journal of Fatigue, 2018, 117: 90-100. doi: 10.1016/j.ijfatigue.2018.08.011
|
[114] |
高杰维. 表面凹坑缺陷对高速列车车轴钢疲劳性能影响研究[D]. 成都: 西南交通大学, 2017.
GAO Jie-wei. Research on influence of surface PIT defects on the fatigue property of high-speed train axle steel[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
|
[115] |
潘向南. S38C车轴冲击损伤疲劳性能研究[J]. 成都: 西南交通大学, 2018.
PAN Xiang-nan. Study on fatigue performance of impact damage on S38C axle[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
|
[116] |
GAO J W, PAN X N, HAN J, et al. Influence of artificial defects on fatigue strength of induction hardened S38C axles[J]. International Journal of Fatigue, 2020, 139: 105746. doi: 10.1016/j.ijfatigue.2020.105746
|
[117] |
LI X, ZHANG J W, YANG B, et al. Effect of micro-shot peening, conventional shot peening and their combination on fatigue property of EA4T axle steel[J]. Journal of Materials Processing Technology, 2020, 275: 116320. doi: 10.1016/j.jmatprotec.2019.116320
|
[118] |
ZHANG J W, LI H, YANG B, et al. Fatigue properties and fatigue strength evaluation of railway axle steel: effect of micro-shot peening and artificial defect[J]. International Journal of Fatigue, 2020, 132: 105379. doi: 10.1016/j.ijfatigue.2019.105379
|
[119] |
罗艳. 异物致损合金钢EA4T车轴抗疲劳评估方法[D]. 成都: 西南交通大学, 2020.
LUO Yan. Fatigue resistance assessment of externally impacted railway EA4T axle steel[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
|
[120] |
秦庆斌. 铁路客车铸造材料焊接构架疲劳性能及剩余寿命评估[D]. 成都: 西南交通大学, 2020.
QIN Qing-bin. Fatigue performance and residual life evaluation of welded bogie frame made of casting materials for railway passenger vehicle[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
|
[121] |
LEE Y L, PAN J, HATHAWAY R, et al. Fatigue Testing and Analysis: Theory and Practice[M]. Amsterdam: Elsevier, 2005.
|
[122] |
白鑫, 谢里阳, 钱文学. 基于样本聚集原理的疲劳可靠性评估方法及其在零部件上的应用[J]. 机械工程学报, 2016, 52(6): 206-212. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201606029.htm
BAI Xin, XIE Li-yang, QIAN Wen-xue. Fatigue probability evaluation method based on the principle of sample-polymerization[J]. Journal of Mechanical Engineering, 2016, 52(6): 206-212. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201606029.htm
|
[123] |
李存海, 吴圣川, 刘宇轩. 样本信息聚集原理改进及其在铁路车辆结构疲劳评定中的应用[J]. 机械工程学报, 2019, 55(4): 42-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201904006.htm
LI Cun-hai, WU Sheng-chuan, LIU Yu-xuan. Improved sample polymerization principle and the applications onto fatigue assessment of railway vehicle structures[J]. Journal of Mechanical Engineering, 2019, 55(4): 42-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201904006.htm
|
[124] |
汪开忠, 胡芳忠, 陈世杰, 等. 高速列车车轴用DZ2钢的腐蚀疲劳性能[J]. 金属热处理, 2019, 44(4): 81-85. https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201904024.htm
WANG Kai-zhong, HU Fang-zhong, CHEN Shi-jie, et al. Corrosion fatigue property of DZ2 steel for high speed train axle[J]. Heat Treatment of Metals, 2019, 44(4): 81-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSRC201904024.htm
|
[125] |
许佑顶, 姚令侃. 川藏铁路沿线特殊环境地质问题的认识与思考[J]. 铁道工程学报, 2017(1): 1-5. doi: 10.3969/j.issn.1006-2106.2017.01.001
XU You-ding, YAO Ling-kan. Some cognitions and thinkings about the specific geo-environmental problems along the Sichuan-Tibet Railway[J]. Journal of Railway Engineering Society, 2017(1): 1-5. (in Chinese) doi: 10.3969/j.issn.1006-2106.2017.01.001
|
[126] |
吴毅, 尹鸿祥, 孟扬, 等. 高速列车车轴材料的低温高周疲劳性能[J]. 材料热处理学报, 2019, 40(4): 54-61. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201904009.htm
WU Yi, YIN Hong-xiang, MENG Yang, et al. High cycle fatigue properties of high speed axle materials at low temperature[J]. Transaction of Materials and Heat Treatment, 2019, 40(4): 54-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201904009.htm
|
[127] |
任尊松, 吕晓旭, 李秋泽. 典型缺陷车轴应力分布及对疲劳性能影响研究[J]. 北京交通大学学报, 2020, 44(1): 57-63. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202001008.htm
REN Zun-song, LYU Xiao-xu, LI Qiu-ze. Research on the stress distribution of axle with typical defects and its influence on fatigue performance[J]. Journal of Beijing Jiaotong University, 2020, 44(1): 57-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202001008.htm
|
[128] |
陈玲, 马跃. EA4T车轴坯锻后表面开裂机理研究[J]. 铁道机车与动车, 2020(4): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX202004010.htm
CHEN Ling, MA Yue. Study on surface cracking mechanism of EA4T axle blank after forging[J]. Railway Locomotive and Motor Car, 2020(4): 34-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX202004010.htm
|
[129] |
卜玮杰, 高杰维, 戴光泽, 等. 人工缺陷对S38C车轴钢疲劳极限的影响[J]. 机械工程材料, 2020, 44(5): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC202005005.htm
BU Wei-jie, GAO Jie-wei, DAI Guang-ze, et al. Effect of artificial defects on fatigue limit of S38C axle steel[J]. Materials for Mechanical Engineering, 2020, 44(5): 16-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC202005005.htm
|
[130] |
尹鸿祥, 吴毅, 张关震, 等. 沟槽性缺陷对EA4T车轴钢疲劳性能影响规律研究[J]. 铁道技术监督, 2019, 47(8): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJJ201908007.htm
YIN Hong-xiang, WU Yi, ZHANG Guan-zhen, et al. The effects of groove defects on the fatigue performance of EA4T axle steel[J]. Railway Quality Control, 2019, 47(8): 24-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJJ201908007.htm
|
[131] |
KLINGER C, BETTGE D. Axle fracture of an ICE3 high speed train[J]. Engineering Failure Analysis, 2013, 35: 66-81. doi: 10.1016/j.engfailanal.2012.11.008
|
[132] |
RICE J R. Stresses due to a sharp notch in a work-hardening elastic-plastic material loaded by longitudinal shear[J]. Journal of Applied Mechanics, 1967, 34: 287-298. doi: 10.1115/1.3607681
|
[133] |
KUJAWSKI D, ELLYIN F. On the size of plastic zone ahead of a crack-tip[J]. Engineering Fracture Mechanics, 1986, 25: 229-236. doi: 10.1016/0013-7944(86)90219-5
|
[134] |
宋川, 刘建华, 彭金方, 等. 接触应力对车轴钢旋转弯曲微动疲劳寿命的影响[J]. 材料工程, 2014(2): 34-38. doi: 10.3969/j.issn.1001-4381.2014.02.007
SONG Chuan, LIU Jian-hua, PENG Jin-fang, et al. Effect of contact stress on rotating bending fretting fatigue life of railway axle steel[J]. Materials Engineering, 2014(2): 34-38. (in Chinese) doi: 10.3969/j.issn.1001-4381.2014.02.007
|
[135] |
陈刚, 曾东方, 张艳, 等. 空心和实心车轴微动磨损行为的对比研究[J]. 安徽工业大学学报(自然科学版), 2020, 37(1): 12-18. doi: 10.3969/j.issn.1671-7872.2020.01.003
CHEN Gang, ZENG Dong-fang, ZHANG Yan, et al. A comparative study of fretting wear behavior of hollow and solid railway axles[J]. Journal of Anhui University of Technology (Natural Science), 2020, 37(1): 12-18. (in Chinese) doi: 10.3969/j.issn.1671-7872.2020.01.003
|
[136] |
王梦婕. DZ2车轴钢的切向微动磨损行为与冲击磨损行为研究[D]. 成都: 西南交通大学, 2019.
WANG Meng-jie. Research on fretting wear behavior and impact behavior of DZ2 axle steels[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
|
[137] |
平学成, 赵辽翔. 新型空心车轴轮对过盈配合微动疲劳特性分析[J]. 机械设计与制造, 2014(7): 116-119. doi: 10.3969/j.issn.1001-3997.2014.07.036
PING Xue-cheng, ZHAO Liao-xiang. Fretting fatigue characteristics of interference fit joints of wheel and shaft in a locomotive[J]. Machinery Design and Manufacture, 2014(7): 116-119. (in Chinese) doi: 10.3969/j.issn.1001-3997.2014.07.036
|
[138] |
SUNDE S L, BERTO F, HAUGENB. Predicting fretting fatigue in engineering design[J]. International Journal of Fatigue, 2018, 117: 314-326. doi: 10.1016/j.ijfatigue.2018.08.028
|
[139] |
NOWELL D, DINI D, HILLSDA. Recent developments in the understanding of fretting fatigue[J]. Engineering Fracture Mechanics, 2006, 73(2): 207-222. doi: 10.1016/j.engfracmech.2005.01.013
|
[140] |
NESLADEK M, SPANIEL M, JURENKA J, et al. Fretting fatigue—experimental and numerical approaches[J]. International Journal of Fatigue, 2012, 44: 61-73. doi: 10.1016/j.ijfatigue.2012.05.015
|
[141] |
CHOI S J, CHO Y T. Fretting fatigue behavior in railway axle materials[J]. Journal of Mechanical Science and Technology, 2015, 29(1): 23-31. doi: 10.1007/s12206-014-1204-1
|
[142] |
GURER G, GUR C H. Failure analysis of fretting fatigue initiation and growth on railway axle press-fits[J]. Engineering Failure Analysis, 2018, 84: 151-166. doi: 10.1016/j.engfailanal.2017.06.054
|
[143] |
SMITH R A. Fatigue of railway axles: a classic problem revisited[J]. European Structural Integrity Society, 2000, 26: 173-181.
|
[144] |
唐凯, 周留成, 何卫峰, 等. 激光冲击强化对LZ50车轴钢疲劳性能影响试验研究[J]. 中国机械工程, 2020, 31(3): 267-273. doi: 10.3969/j.issn.1004-132X.2020.03.003
TANG Kai, ZHOU Liu-cheng, HE Wei-feng, et al. Experimental study on influence of laser shock processing on fatigue performance of LZ50 axle steels[J]. China Mechanical Engineering, 2020, 31(3): 267-273. (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.03.003
|
[145] |
马天宇. 高速动车组车轴表面强化层的疲劳性能研究[D]. 北京: 北京交通大学, 2018.
MA Tian-yu. The study on fatigue of high-speed EMU axle surface reinforcement layer[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
|
[146] |
王会英. 高速列车车轴材料超声挤压强化技术研究[D]. 北京: 北京交通大学, 2015.
WANG Hui-ying. Research on the ultrasonic extrusion strengthening technology for hollow axle material of high speed train[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese)
|
[147] |
熊平, 贺婷婷, 丁志敏, 等. 提高铁路车轴疲劳性能的表面强化处理技术[J]. 电力机车与城轨车辆, 2014, 37(1): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201401017.htm
XIONG Ping, HE Ting-ting, DING Zhi-min, et al. Technologies of surface hardening treatment for improving the fatigue property of railway axles[J]. Electric Locomotives and Mass Transit Vehicles, 2014, 37(1): 52-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201401017.htm
|
[148] |
梁晨, 覃作祥, 陆兴. EA4T车轴钢的超声冲击表面强化[J]. 大连交通大学学报, 2015, 36(4): 89-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201504021.htm
LIANG Chen, QIN Zuo-xiang, LU Xing. Surface strengthening study of EA4T axle steel by ultrasonic impact treatment (UIT)[J]. Journal of Dalian Jiaotong University, 2015, 36(4): 89-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201504021.htm
|
[149] |
蔡卫星, 邓鸿剑, 徐锋. 滚压强化技术在铁路车轴表面处理中的应用[J]. 机械, 2018, 45(4): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-MECH201806010.htm
CAI Wei-xing, DENG Hong-jian, XU Feng. Application of rolling strengthening technology in surface treatment of railway axles[J]. Machinery, 2018, 45(4): 52-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MECH201806010.htm
|
[150] |
于鑫, 孙杰, 李世涛, 等. 滚压工艺对EA4T车轴表面质量完整性的影响及预测模型建立[J]. 中国表面工程, 2014, 27(5): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-BMGC201405015.htm
YU Xin, SUN Jie, LI Shi-tao, et al. Influence of burnishing process on surface quality integrity of EA4T axles and establishing of prediction model[J]. China Surface Engineering, 2014, 27(5): 87-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMGC201405015.htm
|
[151] |
任学冲, 陈利钦, 刘鑫贵, 等. 表面超声滚压处理对高速列车车轴钢疲劳性能的影响[J]. 材料工程, 2015, 43(12): 1-5. doi: 10.11868/j.issn.1001-4381.2015.12.001
REN Xue-chong, CHEN Li-qin, LIU Xin-gui, et al. Effects of surface ultrasonic rolling processing on fatigue properties of axle steel used on high speed train[J]. Journal of Materials Engineering, 2015, 43(12): 1-5. (in Chinese) doi: 10.11868/j.issn.1001-4381.2015.12.001
|
[152] |
陈利钦, 项彬, 任学冲, 等. 表面超声滚压处理工艺对高速列车车轴钢表面状态的影响[J]. 中国表面工程, 2014, 27(5): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-BMGC201405017.htm
CHEN Li-qin, XIANG Bin, REN Xue-chong, et al. Influences of surface ultrasonic rolling processing parameters on surface condition of axle steel used in high speed trains[J]. China Surface Engineering, 2014, 27(5): 96-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMGC201405017.htm
|
[153] |
徐忠伟. 高速铁路外物损伤车轴疲劳评估方法[D]. 成都: 西南交通大学, 2018.
XU Zhong-wei. Fatigue assessment method for high-speed railway axles due to foreign object damage[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
|
[154] |
李春来, 秦庆斌, 吴圣川, 等. G20Mn5铸钢MAG焊接接头的组织与力学性能[J]. 机械工程材料, 2020, 44(7): 8-11, 17. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC202007002.htm
LI Chun-lai, QIN Qing-bin, WU Sheng-chuan, et al. Microstructure and mechanical properties of G20Mn5 cast steel MAG welded joint[J]. Materials for Mechanical Engineering, 2020, 44(7): 8-11, 17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC202007002.htm
|
[155] |
李春来, 秦庆斌, 吴圣川, 等. 城市铁路转向架焊接构架强度有限元校核[J]. 焊接技术, 2019, 48(10): 91-93. https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ201910027.htm
LI Chun-lai, QIN Qing-bin, WU Sheng-chuan, et al. Finite element strength evaluation of an urban bogie welded frame[J]. Welding Technology, 2019, 48(10): 91-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ201910027.htm
|
[156] |
唐琦. 时速120公里客车209P转向架焊接构架可靠性提升技术研究[D]. 北京: 北京交通大学, 2016.
TANG Qi. Research on reliability improvement of 209P bogie welded frame of passenger car with 120 kilometers per hour[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)
|
[157] |
DEBROY T, MUKHERJEE T, MILEWSKI J O, et al. Scientific, technological and economic issues in metal printing and their solutions[J]. Nature Materials, 2019, 18: 1026-1032. doi: 10.1038/s41563-019-0408-2
|
[158] |
BERETTA S, ROMANO S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes[J]. International Journal of Fatigue, 2017, 94: 178-191. doi: 10.1016/j.ijfatigue.2016.06.020
|
[159] |
ROMANO S, BRANDÃO A, GUMPINGER J, et al. Qualification of AM parts: extreme value statistics applied to tomographic measurements[J]. Materials and Design, 2017, 131: 32-48. doi: 10.1016/j.matdes.2017.05.091
|
[160] |
郭云龙, 井国庆, 张辉. 铁路工程中的3D打印: 发展、挑战和展望[J]. 工业基础创新, 2017(4): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJS201704005.htm
GUO Yun-long, JING Guo-qing, ZHANG Hui. 3D printing in railway engineering: development, challenges and prospects[J]. Industrial Information Creativity, 2017(4): 23-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJS201704005.htm
|
[161] |
张浩然, 孙广合, 郑慧超, 等. 3D打印技术在铁路制动系统中的应用进展[J]. 铁道机车车辆, 2018, 38(3): 72-75. doi: 10.3969/j.issn.1008-7842.2018.03.17
ZHANG Hao-ran, SUN Guang-he, ZHENG Hui-chao, et al. Application of 3D printing technology on braking system in railway system[J]. Railway Locomotive and Car, 2018, 38(3): 72-75. (in Chinese) doi: 10.3969/j.issn.1008-7842.2018.03.17
|
[162] |
WU S C, YU C, YU P S, et al. Corner fatigue cracking behavior of hybrid laser AA7020 welds by synchrotron X-ray computed microtomography[J]. Materials Science Engineering A, 2016, 651: 604-614. doi: 10.1016/j.msea.2015.11.011
|
[163] |
ZHU M L, JIN L, XUAN F Z. Fatigue life and mechanistic modeling of interior micro-defect induced cracking in high cycle and very high cycle regimes[J]. Acta Materialia, 2018, 157: 159-275. http://www.sciencedirect.com/science/article/pii/S1359645418305640
|
[164] |
苗秋玉, 刘妙然, 赵凯, 等. 铝合金增材制造技术研究进展[J]. 激光与光电子学进展, 2018, 55: 011405. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201801006.htm
MIAO Qiu-yu, LIU Miao-ran, ZHAO Kai, et al. Research progress on technologies of additive manufacturing of aluminum alloys[J]. Laser and Optoelectronics Progress, 2018, 55: 011405. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201801006.htm
|
[165] |
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690-2698. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201410002.htm
WANG Hua-ming. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201410002.htm
|
[166] |
LE V D, PESSARD E, MOREL F, et al. Interpretation of the fatigue anisotropy of additively manufactured TA6V alloys via a fracture mechanics approach[J]. Engineering Fracture Mechanics, 2019, 214: 410-426. doi: 10.1016/j.engfracmech.2019.03.048
|
[167] |
吴正凯. 基于缺陷三维成像的增材铝合金各向异性疲劳性能评价[D]. 成都: 西南交通大学, 2020.
WU Zheng-kai. Evaluation of anisotropic fatigue performance of additive manufactured aluminum alloy base don 3D X-ray computed tomography of defects[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
|
[168] |
HU Y N, WU S C, WITHERS P J, et al. The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures[J]. Materials and Design, 2020, 192: 108708. doi: 10.1016/j.matdes.2020.108708
|
[169] |
BAO H Y X, WU S C, WU Z K, et al. A machine-learning fatigue life prediction approach of additively manufactured metals[J]. Engineering Fracture Mechanics, 2021, 242: 107508. doi: 10.1016/j.engfracmech.2020.107508
|
[170] |
BATHIAS C. There is no infinite fatigue life in metallic mateirals[J]. Fatigue and Fracture of Engineering Materials and Structures, 1999, 22(7): 559-565. doi: 10.1046/j.1460-2695.1999.00183.x
|
[171] |
SAKAI T, SATO Y, OGUMAN. Characteristics SN properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue[J]. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25(8/9): 763-773. doi: 10.1046/j.1460-2695.2002.00574.x
|
[172] |
陈一萍, 李亚波, 张晓乐, 等. EA4T车轴钢的高周和超高周疲劳性能研究[J]. 轨道交通装备与技术, 2017(1): 21-23. doi: 10.3969/j.issn.2095-5251.2017.01.008
CHEN Yi-ping, LI Ya-bo, ZHANG Xiao-le, et al. High cycle and very high cycle fatigue behaviors of railway EA4T steel[J]. Railway Transit Equipment and Technology, 2017(1): 21-23. (in Chinese) doi: 10.3969/j.issn.2095-5251.2017.01.008
|
[173] |
王清远, 王中光, 李守新. 高速铁路关键材料超长寿命疲劳断裂性能[J]. 机车电传动, 2003(增): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC2003S1009.htm
WANG Qing-yuan, WANG Zhong-guang, LI Shou-xin. Extra-long life fatigue behavior of key materials for high-speed railway[J]. Electric Drive for Locomotives, 2003(S): 28-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC2003S1009.htm
|
[174] |
鲁连涛, 张卫华. 金属材料超高周疲劳研究综述[J]. 机械强度, 2005(3): 388-394. doi: 10.3321/j.issn:1001-9669.2005.03.021
LU Lian-tao, ZHANG Wei-hua. Review of research on very high cycle fatigue of metal materials[J]. Mechanical Strength, 2005(3): 388-394. (in Chinese) doi: 10.3321/j.issn:1001-9669.2005.03.021
|
[175] |
MURAKAMI Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions[M]. Amsterdam: Elsevier, 2002.
|
[176] |
吴圣川, 吴正凯, 胡雅楠, 等. 同步辐射光源四维原位成像助力材料微结构损伤高分辨表征[J]. 机械工程材料, 2020, 44(6): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC202006017.htm
WU Sheng-chuan, WU Zheng-kai, HU Ya-nan, et al. High-resolution characterization of microstructural damage in materials by synchrotron radiation source 4D in-situ tomography[J]. Materials for Mechanical Engineering, 2020, 44(6): 72-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC202006017.htm
|
[177] |
姜晓明, 王九庆, 秦庆, 等. 中国高能同步辐射光源及其验证装置工程[J]. 中国科学: 物理学, 力学、天文学, 2014, 44(10): 1075-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201410009.htm
JIANG Xiao-ming, WANG Jiu-qing, QIN Qing, et al. Chinese high energy phone source and the test facility[J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2014, 44(10): 1075-1094. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201410009.htm
|
[178] |
程贺, 张玮, 王芳卫, 等. 中国散裂中子源的多学科应用[J]. 物理, 2019, 48(11): 701-707. doi: 10.7693/wl20191101
CHENG He, ZHANG Wei, WANG Fang-wei, et al. Applications of the China spallation neutron source[J]. Physics, 2019, 48(11): 701-707. (in Chinese) doi: 10.7693/wl20191101
|
[179] |
胡海涛, 袁宝, 白波, 等. 中国散裂中子源样品变温环境设备技术[J]. 低温工程, 2019(228): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DWGC201902005.htm
HU Hai-tao, YUAN Bao, BAI Bo, et al. Study on sample variable temperature environmental equipment technology in China spallation neutron source[J]. Cryogenics, 2019(228): 17-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DWGC201902005.htm
|
[180] |
王家鑫, 陈凤艳, 樊强, 等. 转向架构架用铸件缺陷焊接修复技术研究[J]. 焊接技术, 2019, 48(2): 101-102. https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ201902087.htm
WANG Jia-xin, CHEN Feng-yan, FAN Qiang, et al. Welding repair technology of casting defects for bogie frame[J]. Welding Technology, 2019, 48(2): 101-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ201902087.htm
|
[181] |
王东坡, 龚宝明, 吴世品, 等. 焊接接头与结构疲劳延寿技术研究进展综述[J]. 华东交通大学学报, 2016, 33(6): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201606001.htm
WANG Dong-po, GONG Bao-ming, WU Shi-pin, et al. Research Review on fatigue life improvement of welding joint and structure[J]. Journal of East China Jiaotong University, 2016, 33(6): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201606001.htm
|
[182] |
吕晓兰, 王钊, 张龙, 等. 浅议铝合金车体型腔内焊缝背部缺陷避免及修复[J]. 装备制造技术, 2016(12): 213-215, 218. doi: 10.3969/j.issn.1672-545X.2016.12.072
LYU Xiao-lan, WANG Zhao, ZHANG Long, et al. Discussion on defect prevention and repair of aluminum alloy car body cavity weld back defect[J]. Equipment Manufacturing Technology, 2016(12): 213-215, 218. (in Chinese) doi: 10.3969/j.issn.1672-545X.2016.12.072
|
[183] |
周希孺, 吴圣川, 郭峰, 等. 现代铁道车辆结构伤损形式与再制造修复技术[J]. 电焊机, 2020, 50(9): 31-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI202009015.htm
ZHOU Xi-ru, WU Sheng-chuan, GUO Feng, et al. Typical defects and remanufacturing and repairing technologies of modern railway vehicle components[J]. Electric Welding Machine, 2020, 50(9): 31-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI202009015.htm
|
[184] |
侯有忠, 李世亮, 齐先胜, 等. 动车组车轴激光增材再制造工艺评定及分析[J]. 电焊机, 2020, 50(2): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI202002014.htm
HOU You-zhong, LI Shi-liang, QI Xian-sheng, et al. Analysis and processing assessment of laser additive manufacturing for high-speed railway axle[J]. Electric Welding Machine, 2020, 50(2): 69-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI202002014.htm
|
[185] |
祝弘滨, 刘昱. 金属3D打印技术在轨道交通装备领域的应用研究现状[J]. 现代城市轨道交通, 2019(10): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201910019.htm
ZHU Hong-bin, LIU Yu. Current research status of metal prototyping manufacturing (3D-printing) technology application in rail transit equipment[J]. Modern Urban Transit, 2019(10): 77-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201910019.htm
|
[186] |
吴圣川, 朱宗涛, 李向伟. 铝合金的激光焊接及性能评价[M]. 北京: 国防工业出版社, 2014.
WU Sheng-chuan, ZHU Zong-tao, LI Xiang-wei. Laser welding of Aluminum Alloys and the Performance Assessment[M]. Beijing: National Defense Industry Press, 2014. (in Chinese)
|
[187] |
PENG X, KULASEGARAM S, WU S C, et al. An extended finite element method (XFEM) for linear elastic fracture with smooth nodal stress[J]. Computers and Structures, 2017, 179: 48-63. doi: 10.1016/j.compstruc.2016.10.014
|
[188] |
WU S C, ZHANG W H, PENG X, et al. A twice-interpolation finite element method (TFEM) for crack propagation problems[J]. International Journal of Computational Methods, 2012, 9(4): 1250055. doi: 10.1142/S0219876212500557
|
[189] |
TANG X H, WU S C, ZHENG C. A novel virtual node method for polygonal elements[J]. Applied Mathematics and Mechanics-English Edition, 2009, 30(10): 1233-1246. doi: 10.1007/s10483-009-1003-3
|
[190] |
ZHENG C, TANG X H, ZHANG J H, et al. A novel mesh-free poly-cell Galerkin method[J]. Acta Mechanica Sinica, 2009, 25(4): 517-527. doi: 10.1007/s10409-009-0239-5
|
[191] |
WU S C, ZHANG H O, ZHENG C, et al. A high performance large symmetric sparse solver for element-free Galerkin method[J]. International Journal of Computational Methods, 2008, 5(4): 533-550. doi: 10.1142/S0219876208001613
|
[192] |
吴圣川, 吴玉程. ALOF——新一代三维疲劳裂纹扩展分析软件[J]. 计算机辅助工程, 2011, 20(1): 136-140. doi: 10.3969/j.issn.1006-0871.2011.01.031
WU Sheng-chuan, WU Yu-cheng. ALOF: new 3D fatigue crack propagation analysis software[J]. Computer Aided Engineering, 2011, 20(1): 136-140. (in Chinese) doi: 10.3969/j.issn.1006-0871.2011.01.031
|
[193] |
TENG Z H, LIAO D M, WU S C, et al. An adaptively refined XFEM for the dynamic fracture problems with micro-defects[J]. Theoretical and Applied Fracture Mechanics, 2019, 103: 102255. doi: 10.1016/j.tafmec.2019.102255
|
[194] |
TENG Z H, SUN F, WU S C, et al. An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems[J]. Computational Mechanics, 2018, 62(5): 1087-1106. doi: 10.1007/s00466-018-1553-1
|
[195] |
秦庆斌, 吴圣川, 胡雅楠, 等. 高速动车组S38C车轴疲劳强度及剩余寿命评价[J]. 中国科学: 技术科学, 2019, 49(7): 840-850. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201907009.htm
QIN Qing-bin, WU Sheng-chuan, HU Ya-nan, et al. Fatigue strength and residual life assessment of high-speed railway vehicle used S38C hollow axles[J]. Scientia Sinica: Technologica, 2019, 49(7): 840-850. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201907009.htm
|
[196] |
李存海. 铁路车辆结构材料疲劳S-N曲线及裂纹扩展模型研究[D]. 成都: 西南交通大学, 2019.
LI Cun-hai. Modeling the fatigue S-N and crack growth of railway vehicle structural materials[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
|
[197] |
MAIERHOFER J, PIPPAN R, GÄNSER H P. Modified NASGRO equation for physically short cracks[J]. International Journal of Fatigue, 2014, 59: 200-207. doi: 10.1016/j.ijfatigue.2013.08.019
|
[198] |
ZHAI W M, CAI C B, GUO S Z. Coupling model of vertical and lateral vehicle/track interactions[J]. Vehicle System Dynamics, 1996, 26(1): 61-79. doi: 10.1080/00423119608969302
|
[199] |
翟婉明, 赵春发, 夏禾, 等. 高速铁路基础结构动态性能演变及服役安全的基础科学问题[J]. 中国科学: 技术科学, 2014, 44(7): 645-660. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407002.htm
ZHAI Wan-ming, ZHAO Chun-fa, XIA He, et al. Basic scientific issues on dynamic performance evolution of the high-speed railway infrastructure and its service safety[J]. Scientia Sinica: Technologica, 2014, 44(7): 645-660. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407002.htm
|
[200] |
沈志云, 张卫华. 中国高铁技术发展中的理论突破和试验突破[J]. 中国发明与专利, 2020, 17(10): 6-16. doi: 10.3969/j.issn.1672-6081.2020.10.001
SHEN Zhi-yun, ZHANG Wei-hua. Breakthrough in theory development and in experiment methodology of high-speed rail technology in China[J]. China Invention and Patent, 2020, 17(10): 6-16. (in Chinese) doi: 10.3969/j.issn.1672-6081.2020.10.001
|
[201] |
GUO F, WU S C, LIU J X, et al. Fatigue life assessment of bogie frames in high-speed railway vehicles considering gear meshing[J]. International Journal of Fatigue, 2020, 132: 105353. doi: 10.1016/j.ijfatigue.2019.105353
|