Citation: | MIAO Bing-rong, ZHANG Wei-hua, LIU Jian-xin, ZHOU Ning, MEI Gui-ming, ZHANG Ying. Review on frontier technical issues of intelligent railways under Industry 4.0[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 115-131. doi: 10.19818/j.cnki.1671-1637.2021.01.005 |
[1] |
GAO Liang, SHEN Wei-ming, LI Xin-yu. New trends in intelligent manufacturing[J]. Engineering, 2019, 5(4): 619-620. doi: 10.1016/j.eng.2019.07.001
|
[2] |
QU Y J, MING X G, LIU ZW, et al. Smart manufacturing systems: state of the art and future trends[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(9/10/11/12): 3751-3768. doi: 10.1007%2Fs00170-019-03754-7
|
[3] |
李培根. 浅说智能制造[J]. 科技导报, 2019, 37(08): 1. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201908002.htm
LI Pei-gen. Talking about intelligent manufacturing[J]. Science and Technology Review, 2019, 37(8): 1. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201908002.htm
|
[4] |
ROBLEK V, MESKO M, KRAPEZ A. A complex view of Industry 4.0[J]. SAGE Open, 2016, 6(2): 2158244016653987. http://www.researchgate.net/publication/301860128_A_complexity_view_of_Industry_40
|
[5] |
ZHONG R Y, XU Xun, KLOTZ E, et al. Intelligent manufacturing in the context of Industry 4.0: a review[J]. Engineering, 2017, 3(5): 616-630. doi: 10.1016/J.ENG.2017.05.015
|
[6] |
QI Qing-lin, TAO Fei. Digital twin and big data towards smart manufacturing and Industry 4.0: 360 degree comparison[J]. IEEE Access, 2018, 6: 3585-3593. doi: 10.1109/ACCESS.2018.2793265
|
[7] |
XU Li-da, XUE L, Li Ling. Industry 4.0: state of the art and future trends[J]. International Journal of Production Research, 2018, 56(8): 2941-2962. doi: 10.1080/00207543.2018.1444806
|
[8] |
ROJKO A. Industry 4.0 concept: background and overview[J]. International Journal of Interactive Mobile Technologies, 2017, 11(5): 77-90. doi: 10.3991/ijim.v11i5.7072
|
[9] |
DELGADO TELLO E G. Industry 4.0 application of advanced services in logistics[R]. Barcelona: Polytechnic University of Catalonia, 2018.
|
[10] |
SCHUMACHER A, EROL S, SIHN W. A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises[J]. Procedia Cirp, 2016, 52(1): 161-166. http://www.sciencedirect.com/science/article/pii/S2212827116307909
|
[11] |
FARSI M A, ZIO E. Industry 4.0: some challenges and opportunities for reliability engineering[J]. International Journal of Reliability Risk Safety: Theory and Application, 2019, 2(1): 23-34. doi: 10.30699/IJRRS.2.1.4
|
[12] |
TAKAKUWA S, VEZA I, CELAR S. "Industry 4.0" in Europe and East Asia[C]//KATALINIC B. Proceedings of the 29th DAAAM International Symposium. Vienna: DAAAM International, 2018: 61-69.
|
[13] |
HOZDIC E. Smart factory for Industry 4.0: a review[J]. International Journal of Modern Manufacturing Technologies, 2015, 7(1): 28-35. http://www.researchgate.net/publication/282791888_Smart_factory_for_industry_40_A_review
|
[14] |
PRAUSE M. Challenges of Industry 4.0 technology adoption for SMEs: the case of Japan[J]. Sustainability, 2019, 11(20): 5807. doi: 10.3390/su11205807
|
[15] |
德勤洞察. 数字孪生: 连结现实与数字世界[J]. 软件和集成电路, 2020, 5: 78-85. doi: 10.3969/j.issn.2096-062X.2020.08.034
DELOITTE Insight. Digital twin: linking reality and the digital world[J]. Software and Integrated Circuit, 2020, 5: 78-85. (in Chinese) doi: 10.3969/j.issn.2096-062X.2020.08.034
|
[16] |
THOBEN K D, WIESNER S, WUEST T. "Industrie 4.0" and smart manufacturing—a review of research issues and application examples[J]. International Journal of Automation Technology, 2017, 11(1): 4-16. doi: 10.20965/ijat.2017.p0004
|
[17] |
WAGIRE A A, JOSHI R, RATHORE A P S, et al. Development of maturity model for assessing the implementation of Industry 4.0: learning from theory and practice[J]. Production Planning and Control, 2020: 1-20. doi: 10.1080/09537287.2020.1744763
|
[18] |
《铁道技术监督》编辑部. 新时代交通强国铁路先行规划纲要[J]. 铁道技术监督, 2020, 48(9): 1-6, 24. doi: 10.3969/j.issn.1006-9178.2020.09.001
Editorial Office of Railway Quality Control. Outline of powerful nation railway advance planning in the new era[J]. Railway Quality Control, 2020, 48(9): 1-6, 24. (in Chinese) doi: 10.3969/j.issn.1006-9178.2020.09.001
|
[19] |
胡鞍钢. 中国进入后工业化时代[J]. 北京交通大学学报(社会科学版), 2017, 16(1): 1-16. . https://www.cnki.com.cn/Article/CJFDTOTAL-BFJD201701001.htm
HU An-gang. China entering post-industrial era[J]. Journal of Beijing Jiaotong University (Social Sciences Edition), 2017, 16(1): 1-16. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BFJD201701001.htm
|
[20] |
苗圩. 中国制造2025与德国工业4.0异曲同工[J]. 装备制造, 2015(6): 22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBZA201506009.htm
MIAO Wei. Made in China 2025 is similar to German Industry 4.0[J]. Equipment Manufacturing, 2015(6): 22. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZBZA201506009.htm
|
[21] |
PICCAROZZI M, AQUILANI B, GATTI C. Industry 4.0 in management studies: a systematic literature review[J]. Sustainability, 2018, 10(10): 3821. doi: 10.3390/su10103821
|
[22] |
JOSEY J. Intelligent infrastructure for next- generation rail system[J]. Cognizant 2020 insights, 2013: 1-8.
|
[23] |
FRAGA-LAMAS P, FERNANDEZ-CARAMES T M, CASTEDO L. Towards the internet of smart trains: a review on industrial IoT connected railways[J]. Sensors, 2017, 17(6): 1457. doi: 10.3390/s17061457
|
[24] |
王同军. 智能铁路总体架构与发展展望[J]. 铁路计算机应用, 2018, 27(7): 1-8. doi: 10.3969/j.issn.1005-8451.2018.07.003
WANG Tong-jun. Overall framework and development prospect of intelligent railway[J]. Railway Computer Application, 2018, 27(7): 1-8. (in Chinese) doi: 10.3969/j.issn.1005-8451.2018.07.003
|
[25] |
LIN Shao-fu, JIA Ya-fang, XIA Si-bin. Research and analysis on the top design of smart railway[J]. Journal of Physics: Conference Series, 2019, 1187(5): 052053. doi: 10.1088/1742-6596/1187/5/052053
|
[26] |
GRGUREVIC I, ROZIC T. Next generation transport industry innovations[R]. Opatija: Transport and Traffic Sciences University of Zagreb, 2019.
|
[27] |
BIN Sheng, SUN Geng-xin. Optimal energy resources allocation method of wireless sensor networks for intelligent railway systems[J]. Sensors, 2020, 20(2): 482. doi: 10.3390/s20020482
|
[28] |
ALAWAD H, KAEWUNRUEN S. Wireless sensor networks: toward smarter railway stations[J]. Infrastructures, 2018, 3(3): 24. doi: 10.3390/infrastructures3030024
|
[29] |
张卫华, 缪炳荣, 王婷婷, 等. 下一代高速列车发展战略研究[R]. 成都: 西南交通大学, 2017.
ZHANG Wei-hua, MIAO Bing-rong, WANG Ting-ting, et al. Research on development strategy of next generation high speed train[R]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
|
[30] |
张锦, 徐君翔, 郭静妮, 等. 智能川藏铁路系统总体架构设计与研究[J]. 综合运输, 2020, 42(1): 100-107. https://www.cnki.com.cn/Article/CJFDTOTAL-YSZH202001019.htm
ZHANG Jin, XU Jun-xiang, GUO Jing-ni, et al. Design and research on overall architecture of intelligent Sichuan-Tibet Railway System[J]. China Transportation Review, 2020, 42(1): 100-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSZH202001019.htm
|
[31] |
LU Chun-fang, CAI Chao-xun. Challenges and countermeasures for construction safety during the Sichuan-Tibet Railway Project[J]. Engineering. 2019, 5(5): 833-838. doi: 10.1016/j.eng.2019.06.007
|
[32] |
王峰. 我国高速铁路智能建造技术发展实践与展望[J]. 中国铁路, 2019(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201904001.htm
WANG Feng. Development of China's intelligent HSR building technology and its future[J]. China Railway, 2019(4): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201904001.htm
|
[33] |
康学东. 我国铁路智能建设与运营管理初探[J]. 铁道工程学报, 2019, 36(4): 84-89. doi: 10.3969/j.issn.1006-2106.2019.04.017
KANG Xue-dong. Preliminary exploration on the intelligent construction and operation of china's high-speed railway[J]. Journal of Railway Engineering Society, 2019, 36(4): 84-89. (in Chinese). doi: 10.3969/j.issn.1006-2106.2019.04.017
|
[34] |
史天运. 中国高速铁路信息化现状及智能化发展[J]. 科技导报, 2019, 37(6): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201906009.htm
SHI Tian-yun. Present situation of wide applications of information and intelligence in the field of high-speed railway in China[J]. Science and Technology Review, 2019, 37(6): 53-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201906009.htm
|
[35] |
王可飞, 郝蕊, 卢文龙, 等. 智能建造技术在铁路工程建设中的研究与应用[J]. 中国铁路, 2019(11): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201911009.htm
WANG Ke-fei, HAO Rui, LU Wen-long, et al. Intelligent construction technology and its application in railway engineering construction[J]. China Railway, 2019(11): 45-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201911009.htm
|
[36] |
朱庆, 朱军, 黄华平, 等. 实景三维空间信息平台与数字孪生川藏铁路[J]. 高速铁路技术, 2020, 11(2): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL202002009.htm
ZHU Qing, ZHU Jun, HUANG Hua-ping, et al. Real 3D spatial information platform and digital twin Sichuan-Tibet Railway[J]. High speed Railway Technology, 2020, 11(2): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL202002009.htm
|
[37] |
王洪雨. 智能京张高速铁路总体创新设计[J]. 铁道标准设计, 2020, 64(1): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202001005.htm
WANG Hong-yu. The overall innovative design of the intelligent high-speed railway from Beijing to Zhangjiakou[J]. Railway Standard Design, 2020, 64(1): 7-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202001005.htm
|
[38] |
STAJANO F, HOULT N, WASSELL I, et al. Smart bridges, smart tunnels: transforming wireless sensor networks from research prototypes into robust engineering infrastructure[J]. Ad Hoc Networks, 2010, 8(8): 872-888. doi: 10.1016/j.adhoc.2010.04.002
|
[39] |
HALLDORSDOTTIR K, NIELSEN O A, PRATO C G. Home-end and activity-end preferences for access to and egress from train stations in the Copenhagen Region[J]. International Journal of Sustainable Transportation, 2017, 11(10): 776-786. doi: 10.1080/15568318.2017.1317888
|
[40] |
缪炳荣, 张卫华, 邓永权, 等. 新一代中国高速铁路动车组面临的技术挑战与策略研究[J]. 中国工程科学, 2015, 17(4): 98-112. doi: 10.3969/j.issn.1009-1742.2015.04.011
MIAO Bing-rong, ZHANG Wei-hua, DENG Yong-quan, et al. Technology challenges and strategies of the new generation Chinese high-speed railway EMU[J]. Engineering Science, 2015, 17(4): 98-112. (in Chinese). doi: 10.3969/j.issn.1009-1742.2015.04.011
|
[41] |
张卫华, 缪炳荣. 下一代高速列车关键技术的发展趋势与展望[J]. 机车电传动, 2018(1): 1-5, 12. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201801003.htm
ZHANG Wei-hua, MIAO Bing-rong. Development trend and prospect of key technologies for next generation high speed trains[J]. Electric Drive for Locomotives, 2018(1): 1-5, 12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201801003.htm
|
[42] |
缪炳荣, 张卫华, 池茂儒, 等. 下一代高速列车关键技术特征分析及展望[J]. 铁道学报, 2019, 41(3): 58-70. doi: 10.3969/j.issn.1001-8360.2019.03.008
MIAO Bing-rong, ZHANG Wei-hua, CHI Mao-ru, et al. Analysis and prospects key technical features of next generation high speed trains[J]. Journal of the China Railway Society, 2019, 41(3): 58-70. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.03.008
|
[43] |
梁建英. 开启智能化轨道交通装备新时代[J]. 科学, 2020, 73(2): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-KXZZ202002005.htm
LIANG Jian-ying. Start a new era of intelligent rail transit equipment[J]. Science, 2020, 73(2): 17-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXZZ202002005.htm
|
[44] |
ZHAO Hong-wei, LIANG Jian-ying, LIU Chang-qing. High- speed EMUs: characteristics of technological development and trend[J]. Engineering, 2020, 6(3): 234-244. doi: 10.1016/j.eng.2020.01.008
|
[45] |
HODGE V J, O'KEEFE S, WEEKS M, et al. Wireless sensor networks for condition monitoring in the railway industry: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(3): 1088-1106. doi: 10.1109/TITS.2014.2366512
|
[46] |
TAKIKAWA M. Innovation in railway maintenance utilizing information and communication technology (smart maintenance initiative)[J]. Japan Railway and Transport Review, 2016(67): 22-35. http://trid.trb.org/view/1402702
|
[47] |
梁建英. 高速列车智能诊断与故障预测技术研究[J]. 北京交通大学学报, 2019, 43(1): 63-70. doi: 10.11860/j.issn.1673-0291.2019.01.007
LIANG Jian-ying. Research on intelligent diagnosis and fault prediction technology for high speed trains[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 63-70. (in Chinese) doi: 10.11860/j.issn.1673-0291.2019.01.007
|
[48] |
GHOFRANI F, HE Q, GOVERDE R M P, et al. Recent applications of big data analytics in railway transportation systems: a survey[J]. Transportation Research Part C—Emerging Technologies, 2018, 90: 226-246. doi: 10.1016/j.trc.2018.03.010
|
[49] |
GALAR D, KARIM R, KUMAR U. Big data in railway operations and maintenance[EB/OL]. (2020-07-07)[2020-09-07]. https://www.globalrailwayreview.com/article/61515/big-data-railway-operations-maintenance-2/.
|
[50] |
ZHU Li, YU F R, WANG Yi-ge, et al. Big data analytics in intelligent transportation systems: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(1): 383-398. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112858552.html
|
[51] |
HSU H H, CHANG Chuan-yu, HSU C H. Big Data Analytics for Sensor-network Collected Intelligence[M]. London: Academic Press, 2017.
|
[52] |
GUYON I, AMINE R, TAMAYO S, et al. Analysis of the opportunities of industry 4.0 in the aeronautical sector[C]//IMCIC. 10th International Multi-Conference on Complexity, Informatics and Cybernetics. Orlando: IMCIC 2019: 02063948.
|
[53] |
JANUSOVA L, CICMANCOVA S. Improving safety of transportation by using intelligent transport systems[J]. Procedia Engineering, 2016, 134: 14-22. doi: 10.1016/j.proeng.2016.01.031
|
[54] |
FUMEO E, ONETO L, ANGUITA D. Condition based maintenance in railway transportation systems based on big data streaming analysis[J]. Procedia Computer Science, 2015, 53: 437-446. doi: 10.1016/j.procs.2015.07.321
|
[55] |
AZPIAZU J, SILTANEN S, MULTANEN P, et al. Remote support for maintenance tasks by the use of augmented Reality: the ManuVAR project[C]//VTT. CARVI 2011: IX Congress on Virtual Reality Applications. Alava: VTT, 2011: 1-6.
|
[56] |
HALL N, LOWE C, HIRSCH R. Human factors considerations for the application of augmented reality in an operational railway environment[J]. Procedia Manufacturing, 2015, 3: 799-806. doi: 10.1016/j.promfg.2015.07.333
|
[57] |
POTTER K. Augmented reality becoming a focus in maintenance technology[EB/OL]. (2020-08-08)[2020-09-07]. https://www.geospatialworld.net/blogs/augmented-reality-becoming-a-focus-in-maintenance-technology/.
|
[58] |
DIDIER J Y, ROUSSEL D, MALLEM M, et al. AMRA: augmented reality assistance for train maintenance tasks[C]//ISMAR. 4th ACM/IEEE International Symposium on Mixed and Augmented Reality. Vienna: ISMAR, 2005: 00339457
|
[59] |
MARR B. 5 important augmented and virtual reality trends for 2019 everyone should read[DB/OL]. (2020-08-08)[2020-09-07]. https://www.forbes.com/sites/bernardmarr/2019/01/14/5-important-augmented-and-virtual-reality-trends-for-2019-everyone-should-read/#682a027222e7.
|
[60] |
GHOBAKHLOO M. Determinants of information and digital technology implementation for smart manufacturing[J]. International Journal of Production Research, 2020, 58(8): 2384-2405. doi: 10.1080/00207543.2019.1630775
|
[61] |
NIKOLAKIS N, ALEXOPOULOS K, XANTHAKIS E, et al. The digital twin implementation for linking the virtual representation of human-based production tasks to their physical counterpart in the factory-floor[J]. International Journal of Computer Integrated Manufacturing, 2019, 32(1): 1-12. doi: 10.1080/0951192X.2018.1529430
|
[62] |
NICHOLSON G. Digital twins and the railway: one framework many implementations[EB/OL]. (2020-08-11)[2020-09-07]. https://www.rssb.co.uk/Insights-and-News/Blogs/Digital-twin-and-the-railway-one-framework-many-implementations.
|
[63] |
MIKELL M. Immersive analytics: the reality of IoT and digital twin[EB/OL]. (2020-08-11)[2020-09-07]. https://www.ibm.com/blogs/internet-of-things/immersive-analytics-digital-twin/.
|
[64] |
THADURI A, GALAR D, KUMAR U. Railway assets: a potential domain for big data analytics[J]. Procedia Computer Science, 2015, 53: 457-467. doi: 10.1016/j.procs.2015.07.323
|
[65] |
ZHANG Da-lin. High-speed train control system big data analysis based on the fuzzy RDF model and uncertain reasoning[J]. International Journal of Computers Communications and Control, 2017, 12(4): 577-591. doi: 10.15837/ijccc.2017.4.2914
|
[66] |
JAMSHIDI A, HAJIZADEH S, SU Z, et al. A decision support approach for condition-based maintenance of rails based on big data analysis[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 185-206. doi: 10.1016/j.trc.2018.07.007
|
[67] |
FINK O, WANG Q, SVENSÉN M, et al. Potential, challenges and future directions for deep learning in prognostics and health management applications[J]. Engineering Applications of Artificial Intelligence, 2020, 92: 103678. doi: 10.1016/j.engappai.2020.103678
|
[68] |
JAMSHIDI A, FAGHIH-ROOHI S, HAJIZADEH S, et al. A big data analysis approach for rail failure risk assessment[J]. Risk Analysis, 2017, 37(8): 1495-1507. doi: 10.1111/risa.12836
|
[69] |
NUNEZ A, HENDRIKS J, LI Z, et al. Facilitating maintenance decisions on the Dutch railways using big data: the ABA case study[C]//IEEE. 2014 IEEE International Conference on Big Data. New York: IEEE, 2014: 48-53.
|