Citation: | XIAO Shou-ne, JIANG Lan-xin, JIANG Wei, HE Zi-kun, YANG Guang-wu, YANG Bing, ZHU Tao, WANG Ming-meng. Application and prospect of composite materials in rail transit vehicles[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 154-176. doi: 10.19818/j.cnki.1671-1637.2021.01.007 |
[1] |
肖加余, 刘钧, 曾竟成, 等. 复合材料在高速列车上的应用现状与趋势[J]. 机车电传动, 2003(增): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC2003S1015.htm
XIAO Jia-yu, LIU Jun, ZENG Jing-cheng, et al. Application status quo and trend of composites for high-speed train[J]. Electric Drive for Locomotives, 2003(S): 49-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC2003S1015.htm
|
[2] |
蒋鞠慧, 陈敬菊. 复合材料在轨道交通上的应用与发展[J]. 玻璃钢/复合材料, 2009(6): 81-85. doi: 10.3969/j.issn.1003-0999.2009.06.021
JIANG Ju-hui, CHEN Jing-ju. Applications and development of composites in rail way transportation[J]. Fiber Reinforced Plastics/Composites, 2009(6): 81-85. (in Chinese) doi: 10.3969/j.issn.1003-0999.2009.06.021
|
[3] |
邱桂杰, 杨洪忠, 高国强, 等. 高速列车用复合材料国内外现状与趋势[J]. 高科技纤维与应用, 2005, 30(6): 26-30. doi: 10.3969/j.issn.1007-9815.2005.06.006
QIU Gui-jie, YANG Hong-zhong, GAO Guo-qiang, et al. The status que and trend of the application of composites on high-speed train over the world[J]. Hi-Tech Fiber and Application, 2005, 30(6): 26-30. (in Chinese) doi: 10.3969/j.issn.1007-9815.2005.06.006
|
[4] |
蔡富刚, 王硕, 郭福海, 等. 高性能复合材料在轨道交通领域的发展现状[J]. 高科技纤维与应用, 2020, 45(2): 22-29. doi: 10.3969/j.issn.1007-9815.2020.02.003
CAI Fu-gang, WANG Shuo, GUO Fu-hai, et al. Current status of high performance composite materials in the field of mass transit[J]. Hi-Tech Fiber and Application, 2020, 45(2): 22-29. (in Chinese) doi: 10.3969/j.issn.1007-9815.2020.02.003
|
[5] |
杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001
DU Shan-yi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12. (in Chinese) doi: 10.3321/j.issn:1000-3851.2007.01.001
|
[6] |
ARONHIME J, HAREL H, GILBERT A, et al. The rate-dependence of flexural shear fatigue and uniaxial compression of carbon- and aramid-fibre composites and hybrids[J]. Composites Science and Technology, 1992, 43(2): 105-116. doi: 10.1016/0266-3538(92)90001-J
|
[7] |
李辰, 许淑萍, 张伟龙, 等. 复合材料在轨道交通转向架中的应用[J]. 纤维复合材料, 2019, 36(3): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-QWFC201903002.htm
LI Chen, XU Shu-ping, ZHANG Wei-long, et al. Application of composite materials in bogie of rail transit[J]. Fiber Composites, 2019, 36(3): 6-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QWFC201903002.htm
|
[8] |
JIANG Hong-yong, REN Yi-ru, LIU Zhi-hui, et al. Multi-scale analysis for mechanical properties of fiber bundle and damage characteristics of 2D triaxially braided composite panel under shear loading[J]. Thin-Walled Structures, 2018, 132: 276-286. doi: 10.1016/j.tws.2018.08.022
|
[9] |
周伟旭. 碳纤维增强树脂基复合材料在轨道交通车辆车体中的应用与思考[J]. 城市轨道交通研究, 2018, 21(12): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201812005.htm
ZHOU Wei-xu. On the application of carbon fiber reinforced polymer to rail transit composite carbody[J]. Urban Mass Transit, 2018, 21(12): 10-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201812005.htm
|
[10] |
潘玉琴. 玻璃钢复合材料基体树脂的发展现状[J]. 纤维复合材料, 2006, 23(4): 55-59. doi: 10.3969/j.issn.1003-6423.2006.04.016
PAN Yu-qin. Development status of FRP/composites matrix resin[J]. Fiber Composites, 2006, 23(4): 55-59. (in Chinese) doi: 10.3969/j.issn.1003-6423.2006.04.016
|
[11] |
樊星. 碳纤维复合材料的应用现状与发展趋势[J]. 化学工业, 2019, 37(4): 12-16. doi: 10.3969/j.issn.1673-9647.2019.04.004
FAN Xing. Application status and development trend of carbon fiber reinforced plastic[J]. Chemical Industry, 2019, 37(4): 12-16. (in Chinese) doi: 10.3969/j.issn.1673-9647.2019.04.004
|
[12] |
VALLONS K, BEHAEGHE A, LOMOV S V, et al. Impact and post-impact properties of a carbon fibre non-crimp fabric and a twill weave composite[J]. Composites, Part A: Applied Science and Manufacturing, 2010, 41(8): 1019-1026. doi: 10.1016/j.compositesa.2010.04.008
|
[13] |
JOHNSTON J, MIRZA O, KEMP M, et al. Flexural behaviour of alternate transom using composite fibre pultruded sections[J]. Engineering Failure Analysis, 2018, 94: 47-68. doi: 10.1016/j.engfailanal.2018.07.021
|
[14] |
李明高, 张丽娇. 轨道交通装备复合材料应用现状及发展趋势展望[J]. 纺织导报, 2020(7): 20-24. doi: 10.3969/j.issn.1007-6867.2020.07.006
LI Ming-gao, ZHANG Li-jiao. Application status and development trends of composites for rail transit equipment[J]. China Textile Leader, 2020(7): 20-24. (in Chinese) doi: 10.3969/j.issn.1007-6867.2020.07.006
|
[15] |
RIVEIRO A, QUINTERO F, LUSQUIÑOS F, et al. Experimental study on the CO2 laser cutting of carbon fiber reinforced plastic composite[J]. Composites, Part A: Applied Science and Manufacturing, 2012, 43(8): 1400-1409. doi: 10.1016/j.compositesa.2012.02.012
|
[16] |
王明猛. 碳纤维复合材料在高速列车上的应用研究[D]. 成都: 西南交通大学, 2012.
WANG Ming-meng. Application and research of carbon fiber composite materials in vehicle hood of high-speed train[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)
|
[17] |
FARHAD A, YASAMAN A, NING Y, et al. Frictional behavior of resin-based brake composites: effect of carbon fibre reinforcement[J]. Wear, 2019, 420: 108-115. http://www.sciencedirect.com/science/article/pii/S0043164818308743
|
[18] |
CHAMIS C C. Mechanics of composite materials: past, present and future[J]. Journal of Composite Technology Research, 1989(11): 3-14. http://www.researchgate.net/publication/4664242_Mechanics_of_composite_materials_-_Past_present_and_future
|
[19] |
MORI T, TANAKA K. Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Metallurgica, 1973, 21(5): 571-574. doi: 10.1016/0001-6160(73)90064-3
|
[20] |
TSAI S W, WU E M. A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 1971, 5(1): 58-80. doi: 10.1177/002199837100500106
|
[21] |
TOYODA M. Strength characteristics of composite materials[J]. Welding international, 1991, 5(5): 341-345. doi: 10.1080/09507119109446748
|
[22] |
HOFFMAN O. The brittle strength of orthotropic materials[J]. Journal of Composite Materials, 1967, 1(2): 200-206. doi: 10.1177/002199836700100210
|
[23] |
HASHIN Z. Fatigue failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics—Transactions of the ASME, 1981, 48: 846-852. doi: 10.1115/1.3157744
|
[24] |
HASHIN Z, ROTEM A. A fatigue failure criterion for fiber reinforced materials[J]. Journal of Composite Materials, 1973, 7(4): 448-464. doi: 10.1177/002199837300700404
|
[25] |
OLMEDO A, SANTIUSTE C. On the prediction of bolted single-lap composite joints[J]. Composite Structures, 2012, 94(6): 2110-2117. doi: 10.1016/j.compstruct.2012.01.016
|
[26] |
TSERPES K I, PAPANIKOS P, KERMANIDIS T. A three-dimensional progressive damage model for bolted joints in composite laminates subjected to tensile loading[J]. Fatigue and Fracture of Engineering Materials and Structures, 2001, 24(10): 663-675. doi: 10.1046/j.1460-2695.2001.00424.x
|
[27] |
周银华. 非线性本构在复合材料多钉螺栓连接结构中的应用[D]. 西安: 西北工业大学, 2016.
ZHOU Yin-hua. A study of nonlinear models of composites and its application to composite multi-bolt joints[D]. Xi'an: Northwestern Polytechnical University, 2016. (in Chinese)
|
[28] |
LIU Xi, WANG Guo-ping. Progressive failure analysis of bonded composite repairs[J]. Composite Structures, 2007, 81(3): 331-340. doi: 10.1016/j.compstruct.2006.08.024
|
[29] |
杨宇航. 复合材料层合板结构非局部渐进失效建模与有限元分析[D]. 杭州: 浙江大学, 2015.
YANG Yu-hang. Nonlocal progressive failure modeling and finite element analysis of composite laminates[D].Hangzhou: Zhejiang University, 2015. (in Chinese)
|
[30] |
施建伟. 基于ABAQUS复合材料层合板渐进损伤有限元分析[D]. 太原: 中北大学, 2015.
SHI Jian-wei. The finite element analysis of the progressive damage of composite laminated plates based on ABAQUS[D]. Taiyuan: North University of China, 2015. (in Chinese)
|
[31] |
闫亚萍. 考虑Z向应力复合材料层压板渐进失效计算方法[D]. 上海: 上海交通大学, 2015.
YAN Ya-ping. Progressive failure analysis of composite laminate considering the stress of Z direction[D]. Shanghai: Shanghai Jiaotong University, 2015. (in Chinese)
|
[32] |
王文斌, 冀温源, 张栋栋, 等. 地铁车辆司机室碳纤维复合材料头罩的分步优化设计[J]. 城市轨道交通研究, 2018, 21(11): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201811010.htm
WANG Wen-bin, JI Wen-yuan, ZHANG Dong-dong, et al. Stepwise optimization design of metro train cab hood made of carbon fiber composite material[J]. Urban Mass Transit, 2018, 21(11): 27-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201811010.htm
|
[33] |
李永华, 温昕, 王剑, 等. 复合材料地铁车车头外罩铺层优化设计[J]. 现代制造工程, 2019(9): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201909014.htm
LI Yong-hua, WEN Xin, WANG Jian, et al. Optimization design of the overlay of composite material subway car head cover[J]. Modern Manufacturing Engineering, 2019(9): 87-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201909014.htm
|
[34] |
李兴元, 王悦东, 王剑. 动车组车头玻璃钢外壳强度有限元分析[J]. 农业装备与车辆工程, 2017, 55(10): 58-61. doi: 10.3969/j.issn.1673-3142.2017.10.013
LI Xing-yuan, WANG Yue-dong, WANG Jian. Finite-element analysis on strength of glass-reinforced plastic shell of EMU locomotive-engine[J]. Agricultural Equipment and Vehicle Engineering, 2017, 55(10): 58-61. (in Chinese) doi: 10.3969/j.issn.1673-3142.2017.10.013
|
[35] |
李晓峰, 孙博飞, 高峰. 动车组玻璃钢车头及联接结构建模方法研究[J]. 大连交通大学学报, 2016, 37(1): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201601010.htm
LI Xiao-feng, SUN Bo-fei, GAO Feng. Study of EMU GRP front and coupling structure modeling method[J]. Journal of Dalian Jiaotong University, 2016, 37(1): 36-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201601010.htm
|
[36] |
王明猛, 肖守讷, 阳光武, 等. 碳纤维复合材料在高速列车头罩上的应用研究[J]. 电力机车与城轨车辆, 2015, 38(1): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI2015S1013.htm
WANG Ming-meng, XIAO Shou-ne, YANG Guang-wu, et al. Application and research of carbon fiber composite materials in vehicle hood of high-speed train[J]. Electric Locomotives and Mass Transit Vehicles, 2015, 38(1): 53-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI2015S1013.htm
|
[37] |
王永刚, 李东锋, 刘森. 城市轨道交通车辆轻量化司机室结构研究[J]. 铁道机车与动车, 2013(11): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX201311002.htm
WANG Yong-gang, LI Dong-feng, LIU Sen. Study of light weight cab structure for urban rail transit vehicles[J]. Railway Locomotive and Motor Car, 2013(11): 5-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX201311002.htm
|
[38] |
张胜, 江大治, 周升, 等. 高速列车复合材料司机室混杂结构有限元分析[J]. 玻璃钢/复合材料, 2006(2): 10-13. doi: 10.3969/j.issn.1003-0999.2006.02.003
ZHANG Sheng, JIANG Da-zhi, ZHOU Sheng, et al. Finite element analysis of composite cab for high speed trains[J]. Fiber Reinforced Plastics/Composites, 2006(2): 10-13. (in Chinese) doi: 10.3969/j.issn.1003-0999.2006.02.003
|
[39] |
王悦东, 兆文忠, 陈秉智, 等. 高速客车车体端板复合材料层合结构的力学性能数值模拟[J]. 大连交通大学学报, 2008(5): 22-26. doi: 10.3969/j.issn.1673-9590.2008.05.005
WANG Yue-dong, ZHAO Wen-zhong, CHEN Bing-zhi, et al. Numerical simulation of composite material mechanical strength of flat end coverings on high-speed train[J]. Journal of Dalian Jiaotong University, 2008(5): 22-26. (in Chinese) doi: 10.3969/j.issn.1673-9590.2008.05.005
|
[40] |
KIM J S, JEONG J C. Natural frequency evaluation of a composite train carbody with length of 23 m[J]. Composites Science and Technology, 2006, 66(13): 2272-2283. doi: 10.1016/j.compscitech.2005.11.036
|
[41] |
KIM J S, JEONG J C, LEE S J. Numerical and experimental studies on the deformational behavior a composite train carbody of the Korean tilting train[J]. Composite Structures, 2006, 81(2): 168-175. http://www.sciencedirect.com/science/article/pii/S0263822306003084
|
[42] |
KIM J S, YOON H J. Structural behaviors of a GFRP composite bogie frame for urban subway trains under critical load conditions[J]. Procedia Engineering, 2011, 10: 2375-2380. doi: 10.1016/j.proeng.2011.04.391
|
[43] |
JEON K W, SHIN K B, KIM J S. A study on fatigue life and strength of a GFRP composite bogie frame for urban subway trains[J]. Procedia Engineering, 2011, 10: 2405-2410. doi: 10.1016/j.proeng.2011.04.396
|
[44] |
KIM J S, SHIN K B, YOON H J, et al. Durability evaluation of a composite bogie frame with bow-shaped side beams[J]. Journal of Mechanical Science and Technology, 2012, 26(2): 531-536. doi: 10.1007/s12206-011-1034-3
|
[45] |
KIM J S. Fatigue assessment of tilting bogie frame for Korean tilting train: analysis and static tests[J]. Engineering Failure Analysis, 2006, 13(8): 1326-1337. doi: 10.1016/j.engfailanal.2005.10.007
|
[46] |
HARTE A M, MCNAMARA J F, RODDY I D. A multilevel approach to the optimisation of a composite light rail vehicle bodyshell[J]. Composite Structures, 2004, 63(3): 447-453. http://www.sciencedirect.com/science/article/pii/S0263822303001934
|
[47] |
DOEBRICH O, GEREKE T, CHERIF C. Modeling the mechanical properties of textile-reinforced composites with a near micro-scale approach[J]. Composite Structures, 2016, 135(1): 1-7. http://www.sciencedirect.com/science/article/pii/S0263822315008466
|
[48] |
胡殿印, 杨尧, 郭小军, 等. 一种平纹编织复合材料的三维通用单胞模型[J]. 航空动力学报, 2019, 34(3): 103-110. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201903012.htm
HU Dian-yin, YANG Yao, GUO Xiao-jun, et al. A 3D general method of cells model for plain weave composites[J]. Journal of Aerospace Power, 2019, 34(3): 103-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201903012.htm
|
[49] |
PRODROMOU A G, LOMOV S V, VERPOEST I. The method of cells and the mechanical properties of textile composites[J]. Composite Structures, 2011, 93(4): 1290-1299. doi: 10.1016/j.compstruct.2010.09.022
|
[50] |
LOMOV S V, BERNAL E, IVANOV D S, et al. Homogenisation of a sheared unit cell of textile composites FEA and approximate inclusion model[J]. Revue Européenne Des Éléments Finis, 2005, 14(6/7): 709-728. doi: 10.3166/reef.14.709-728
|
[51] |
TANG Xing-dong, WHITCOMB J D, KELKAR A D, et al. Progressive failure analysis of 2×2 braided composites exhibiting multiscale heterogeneity[J]. Composites Science and Technology, 2006, 66(14): 2580-2590. doi: 10.1016/j.compscitech.2006.01.026
|
[52] |
严雪, 许希武, 张超. 二维三轴编织复合材料的弹性性能分析[J]. 固体力学学报, 2013, 34(2): 140-151. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201302004.htm
YAN Xue, XU Xi-wu, ZHANG Chao. Analysis of elastic properties of 2D triaxial braided composites[J]. Chinese Journal of Solid Mechanics, 2013, 34(2): 140-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201302004.htm
|
[53] |
张超, 许希武, 郭树祥. 二维二轴1×1编织复合材料细观结构模型及力学性能有限元分析[J]. 复合材料学报, 2011, 28(6): 215-222. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201106036.htm
ZHANG Chao, XU Xi-wu, GUO Shu-xiang. Microstructure model and finite element analysis of mechanical properties of 2D 1×1 biaxial braided composites[J]. Acta Materiae Compositae Sinica, 2011, 28(6): 215-222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201106036.htm
|
[54] |
张超, 许希武. 二维二轴编织复合材料几何模型及弹性性能预测[J]. 复合材料学报, 2010, 27(5): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201005023.htm
ZHANG Chao, XU Xi-wu. Geometrical model and elastic properties prediction of 2D biaxial braided composites[J]. Acta Materiae Compositae Sinica, 2010, 27(5): 129-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201005023.htm
|
[55] |
PIBO M, HONG H, SUN Bao-zhong. Finite element analyses of tensile impact behaviors of co-woven-knitted composite from unit-cell approach[J]. Journal of the Textile Institute, 2013, 104(4): 446-459. doi: 10.1080/00405000.2012.741775
|
[56] |
SUN Bao-zhong, LIU Yuan-kun, GU Bo-hong. A unit cell approach of finite element calculation of ballistic impact damage of 3-D orthogonal woven composite[J]. Composites, Part B: Engineering, 2009, 40(6): 552-560. doi: 10.1016/j.compositesb.2009.01.012
|
[57] |
SUN Zhi-hong, CHEN Yang, ZHOU Shen-hua. Analysis of micro structure and elastic property on 3-D tubular woven carbon fiber composite[J]. Advanced Materials Research, 2014, 887/888: 11-16. doi: 10.4028/www.scientific.net/AMR.887-888.11
|
[58] |
CHEN Ding-ding, LU Fang-yun, JIANG Bang-hai. Tensile properties of a carbon fiber 2D woven reinforced polymer matrix composite in through-thickness direction[J]. Journal of Composite Materials, 2012, 46(26): 3297-3309. doi: 10.1177/0021998312437800
|
[59] |
俞程亮. 三明治复合板结构高速磁浮列车承载结构优化研究[D]. 上海: 同济大学, 2006.
YU Cheng-liang. Optimization of high-speed maglev train with sandwich composite board[J]. Shanghai: Tongji University, 2006. (in Chinese)
|
[60] |
LINDSTRÖM A, HALLSTRÖM S. In-plane compression of sandwich panels with debonds[J]. Composite Structure, 2010, 92: 532-540. doi: 10.1016/j.compstruct.2009.08.039
|
[61] |
SLEIGHT D W, WANG J T. Buckling analysis of debonded sandwich panel under compression[D]. Hampton: NASA Langley Research Center, 1995.
|
[62] |
LEE C, MIGNOSA L, BASCI M. A postbuckling solution for debonded sandwich panel under in-plane compression[C]//AIAA. 38th Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 1997: 2584-2590.
|
[63] |
MAMALIS A G, MANOKAKOS D E, IOANNIDIS M B, et al. On the crushing response of composite sandwich panels subjected to edgewise compression: experimental[J]. Composite Structure, 2005, 71: 246-257. doi: 10.1016/j.compstruct.2004.10.006
|
[64] |
LIU Cheng-jun, ZHANG Yi-xia, QIN Qing-hua, et al. High velocity impact modelling of sandwich panels with aluminium foam core and aluminium sheet skins[J]. Applied Mechanics and Materials, 2014, 553: 745-750. doi: 10.4028/www.scientific.net/AMM.553.745
|
[65] |
JIANG Lan-xin, YANG Bing, XIAO Shou-ne, et al. Simulation study of adhesive material for sandwich panel under edgewise compression condition [J]. Materials, 2020, 13: 1-14. http://www.researchgate.net/publication/340039547_Simulation_Study_of_Adhesive_Material_for_Sandwich_Panel_under_Edgewise_Compression_Condition
|
[66] |
LIU Long-quan, MENG Peng, WANG Hai, et al. The flatwise compressive properties of Nomex honeycomb core with debonding imperfections in the double cell wall[J]. Composites, Part B: Engineering, 2015, 76: 122-132. doi: 10.1016/j.compositesb.2015.02.017
|
[67] |
OGASAWARA N, CHIBA N, KOBAYASHI E, et al. Crushing strength of aluminum honeycomb with thinning cell wall[J]. Journal of Solid Mechanics and Materials Engineering, 2010, 4(8): 1338-1445. doi: 10.1299/jmmp.4.1338
|
[68] |
AMINANDA Y, CASTANIE B, BARRAU J, et al. Experimental analysis and modeling of the crushing of honeycomb cores[J]. Applied Composite Materials, 2005, 12: 213-227. doi: 10.1007/s10443-005-1125-3
|
[69] |
MUHAMMAD K K, WANG Qing-yuan. Experimental and finite element based investigations of in-plane and out-of-plane properties of aluminum honeycomb[J]. Applied Mechanics and Materials, 2013, 275-277: 111-116. doi: 10.4028/www.scientific.net/AMM.275-277.111
|
[70] |
WANG Zhong-gang, LI Zhen-dong, ZHOU Wei, et al. On the influence of structural defects for honeycomb structure[J]. Composite, Part B: Engineering, 2018, 142: 183-192. doi: 10.1016/j.compositesb.2018.01.015
|
[71] |
WANG Zhong-gang, LIU Jie-fu, LU Zhai-jun. Mechanical behavior of composited structure filled with tandem honeycombs[J]. Composites, Part B: Engineering, 2017, 114: 128-138. doi: 10.1016/j.compositesb.2017.01.018
|
[72] |
BANG S O, CHO J U. A study on the compression property of sandwich composite with porous core[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(6): 1117-1122. doi: 10.1007/s12541-015-0144-8
|
[73] |
RAJKUMAR S, ARULMURUGAN B, MANIKANDAN M, et al. Analysis of physical and mechanical properties of A3003 aluminum honeycomb core sandwich panels[J]. Applied Mechanics and Materials, 2016, 867: 245-253. http://www.scientific.net/AMM.867.245
|
[74] |
CAI Liang-cai, ZHANG Duo-yao, ZHOU Shao-hui, et al. Investigation on mechanical properties and equivalent model of aluminum honeycomb sandwich panels[J]. Journal of Materials Engineering and Performance, 2018, 27(12): 6585-6596. doi: 10.1007/s11665-018-3771-2
|
[75] |
LEE H S, HONG S H, LEE J R, et al. Mechanical behavior and failure process during compressive and shear deformation of honeycomb composite at elevated temperatures[J]. Journal of Materials Science, 2002, 37: 1265-1272. doi: 10.1023/A:1014344228141
|
[76] |
PAIK J K, THAYAMBALLIB A K, KIMA G S. The strength characteristics of aluminum honeycomb sandwich panels[J]. Thin-Walled Structures, 1999, 35: 205-231. doi: 10.1016/S0263-8231(99)00026-9
|
[77] |
WANG Dong-mei, BAI Zi-you. Mechanical property of paper honeycomb structure under dynamic compression[J]. Materials and Design, 2015, 77: 59-64. doi: 10.1016/j.matdes.2015.03.037
|
[78] |
ZHANG Da-hai, JIANG Dong, FEI Qing-gong, et al. Experimental and numerical investigation on indentation and energy absorption of a honeycomb sandwich panel under low-velocity impact[J]. Finite Elements in Analysis and Design, 2016, 117/118: 21-30. doi: 10.1016/j.finel.2016.04.003
|
[79] |
LIU P F, LI X K, LI Z B. Finite element analysis of dynamic mechanical responses of aluminum honeycomb sandwich structures under low-velocity impact[J]. Journal of Failure Analysis and Prevention, 2017, 17: 1202-1207. doi: 10.1007/s11668-017-0358-4
|
[80] |
NURASHIKIN S, HAZIZANA. Preparation and properties of thermoplastic honeycomb core sandwich structure with aluminum skin[J]. Journal of Composite Materials, 2011, 46(2): 183-191. http://adsabs.harvard.edu/abs/2012JCoMa..46..183N
|
[81] |
HE Wen-tao, LIU Jing-xi, TAO Bo, et al. Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures[J]. Composite Structures, 2016, 158: 30-43. doi: 10.1016/j.compstruct.2016.09.009
|
[82] |
PENG Ming-jun, SUN Yong, YAO Ji, et al. Finite element simulation on three-point bending of brazed aluminum honeycomb panel[J]. Advanced Materials Research, 2010, 168-170: 1046-1050. doi: 10.4028/www.scientific.net/AMR.168-170.1046
|
[83] |
XIONG Jian, ZHANG Meng, STOCCHI A, et al. Mechanical behaviors of carbon fiber composite sandwich columns with three dimensional honeycomb cores under in-plane compression[J]. Composites, Part B: Engineering, 2014, 60: 350-358. doi: 10.1016/j.compositesb.2013.12.049
|
[84] |
SUN Zhi, SHI Shan-shan, GUO Xu, et al. On compressive properties of composite sandwich structures with grid reinforced honeycomb core[J]. Composites, Part B: Engineering, 2016, 94: 245-252. doi: 10.1016/j.compositesb.2016.03.054
|
[85] |
BUDHE S, BANEA M D, BARROS S D, et al. An updated review of adhesively bonded joints in composite materials[J]. International Journal of Adhesion and Adhesives, 2017, 72: 30-42. doi: 10.1016/j.ijadhadh.2016.10.010
|
[86] |
BANEA M D, SILVA L F M D. Adhesively bonded joints in composite materials: an overview[J]. Journal of Materials Design and Applications, 2009, 223(1): 1-18. http://www.researchgate.net/publication/245389850_Adhesively_bonded_joints_in_composite_materials_An_overview
|
[87] |
YOU Min, LI Zhi, ZHENG Xiao-ling, et al. A numerical and experimental study of preformed angle in the lap zone on adhesively bonded steel single lap joint[J]. International Journal of Adhesion and Adhesives, 2009, 29(3): 280-285. doi: 10.1016/j.ijadhadh.2008.07.001
|
[88] |
ARENAS J M, NARBÓN J J, ALÍA C. Optimum adhesive thickness in structural adhesives joints using statistical techniques based on Weibull distribution[J]. International Journal of Adhesion and Adhesives, 2010, 30(3): 160-165. doi: 10.1016/j.ijadhadh.2009.12.003
|
[89] |
LI Gang, LEE S P, THRING R W. Nonlinear finite element analysis of stress and strain distributions across the adhesive thickness in composite single-lap joints[J]. Composite Structures, 1999, 46(4): 395-403. doi: 10.1016/S0263-8223(99)00106-3
|
[90] |
XU Wei, WEI Yue-guang. Strength and interface failure mechanism of adhesive joints[J]. International Journal of Adhesion and Adhesives, 2012(34): 80-92. http://www.sciencedirect.com/science/article/pii/S0143749611001710
|
[91] |
SILVA L F M D, NEVES P J C D, ADAMS R D, et al. Analytical models of adhesively bonded joints—Part Ⅰ: literature survey[J]. International Journal of Adhesion and Adhesives, 2009, 29(3): 319-330. doi: 10.1016/j.ijadhadh.2008.06.005
|
[92] |
COSTA MATTOS H S, MONTEIRO A H, SAMPAIO E M. Modelling the strength of bonded butt-joints[J]. Composites, Part B: Engineering, 2010, 41(8): 654-662. doi: 10.1016/j.compositesb.2010.09.002
|
[93] |
李曙光. FRP构件的连接及其设计方法研究[D]. 西安: 西安建筑科技大学, 2012.
LI Shu-guang. Research on connecting and design method for frp constructional elements[D]. Xi'an: Xi'an University of Architecture and Technology, 2012. (in Chinese)
|
[94] |
朱红红. 复合材料螺栓连接接头失效分析与强度预测[D]. 郑州: 郑州大学, 2012.
ZHU Hong-hong. Failure analysis and strength prediction of composite bolted joints[D]. Zhengzhou: Zhengzhou University, 2012. (in Chinese)
|
[95] |
谢宗蕻, 李想, 郭家平, 等. 考虑间隙配合的复合材料钉载分配均匀化方法[J]. 复合材料学报, 2016, 33(4): 806-813. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201604013.htm
XIE Zong-hong, LI Xiang, GUO Jia-ping, et al. Load distribution homogenization method of multi-bolt composite joint with consideration of bolt-hole clearance[J]. Acta Materiae Compositae Sinica, 2016, 33(4): 806-813. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201604013.htm
|
[96] |
LIU Xiang-dong, LI Ya-zhi, YAO Zhen-hua, et al. Study on the pin-load distribution of multiple-bolted composite to metal joints[J]. Key Engineering Materials, 2013, 525/526: 285-288. http://www.scientific.net/KEM.525-526.285
|
[97] |
朱红红, 李成, 何龙, 等. 复合材料两钉斜削搭接接头钉载分配与连接强度研究[J]. 机械工程学报, 2012, 48(20): 57-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201220014.htm
ZHU Hong-hong, LI Cheng, HE Long, et al. Research on pin load distribution and joining strength for multi-bolt beveled-lap composite joints[J]. Journal of Mechanical Engineering, 2012, 48(20): 57-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201220014.htm
|
[98] |
KADIR T, MUSTAFA G, METE O K. Progressive failure analysis of pin-loaded unidirectional carbon-epoxy laminated composites[J]. Mechanics of Advanced Materials and Structures, 2014, 21(2): 98-106. doi: 10.1080/15376494.2012.677109
|
[99] |
KADIR T, METE O K, MUSTAFA G. Progressive failure analysis of laminated composite plates with two serial pinned joints[J]. Mechanics of Advanced Materials and Structures, 2015, 22(10): 839-849. doi: 10.1080/15376494.2012.761302
|
[100] |
KARAKUZU R, CALISKAN C R, AKTAS M, et al. Failure behavior of laminated composite plates with two serial pin-loaded holes[J]. Composite Structures, 2008, 82(2): 225-234. doi: 10.1016/j.compstruct.2007.01.002
|
[101] |
LIU F, QI L, FENG S F. Influence of stacking sequence and number of pin on load distribution of composite joints[C]//AIP. 2nd International Conference on New Material and Chemical Industry. New York: AIP, 2017: 1-6.
|
[102] |
段元欣. CFRP螺栓干涉连接结构预紧行为及静强度研究[D]. 西安: 西北工业大学, 2015.
DUAN Yuan-xin. The preloading behavior and strength of bolted CFRP laminate joints with interference-fit[D]. Xi'an: Northwestern Polytechnical University, 2015. (in Chinese)
|
[103] |
MCCARTHY M A, LAWLOR V P, STANLEY W F, et al. Bolt-hole clearance effects and strength criteria in single-bolt, single-lap, composite bolted joints[J]. Composites Science and Technology, 2002, 62(10): 1415-1431. http://www.sciencedirect.com/science/article/pii/s026635380200088x
|
[104] |
CHANG Fu-kuo. The effect of pin load distribution on the strength of pin loaded holes in laminated composites[J]. Journal of Composite Materials, 1986, 20(4): 401-408. doi: 10.1177/002199838602000407
|
[105] |
CHOI J H, CHUN Y J. Failure load prediction of mechanically fastened composite joints[J]. Journal of Composite Materials, 2003, 37(24): 2163-2177. doi: 10.1177/002199803038108
|
[106] |
SUN H T, CHANG Fu-kuo, QING Xin-lin. The response of composite joints with bolt-clamping loads, Part Ⅰ: model development[J]. Journal of Composite Materials, 2002, 36(1): 47-67. doi: 10.1177/0021998302036001301
|
[107] |
CHOWDHURY N M, CHIU W K, JOHN W, et al. Experimental and finite element studies of bolted, bonded and hybrid step lap joints of thick carbon fibre/epoxy panels used in aircraft structures[J]. Composites, Part B: Engineering, 2016(100): 68-77. http://smartsearch.nstl.gov.cn/paper_detail.html?id=173428acf862c033bd3986cb3e5e2f60
|
[108] |
VALLEE T, TANNERT T, MEENA R, et al. Dimensioning method for bolted, adhesively bonded, and hybrid joints involving fibre-reinforced-polymers[J]. Composites, Part B: Engineering, 2013(46): 179-187. http://www.sciencedirect.com/science/article/pii/S1359836812006257
|
[109] |
BOIS C, WARGNIER H, WAHL J C, et al. An analytical model for the strength prediction of hybrid (bolted/bonded) composite joints[J]. Composite Structures, 2013(97): 252-260. http://www.sciencedirect.com/science/article/pii/S0263822312005144
|
[110] |
李刚, 赵亚峰, 张江田, 等. 复合材料在200km/h机车头型设计中的研究与应用[J]. 纤维复合材料, 2019, 36(3): 12-14. https://www.cnki.com.cn/Article/CJFDTOTAL-QWFC201903003.htm
LI Gang, ZHAO Ya-feng, ZHANG Jiang-tian, et al. Research and application of composite materials in 200km/h locomotive appearance design[J]. Fiber Composites, 2019, 36(3): 12-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QWFC201903003.htm
|
[111] |
孟春红. 玻璃钢在动车及机车司机室内装饰中的应用[J]. 铁道车辆, 2007, 45(4): 19-21. doi: 10.3969/j.issn.1002-7602.2007.04.006
MENG Chun-hong. Application of FRP in decoration inside driver's cabs of motor cars and locomotives[J]. Rolling Stock, 2007, 45(4): 19-21. (in Chinese) doi: 10.3969/j.issn.1002-7602.2007.04.006
|
[112] |
孟庆利, 杨国纪. 城轨车辆司机室头罩的结构功能以及造型分析[J]. 电力机车与城轨车辆, 2011, 34(1): 21-24. doi: 10.3969/j.issn.1672-1187.2011.01.007
MENG Qing-li, YANG Guo-ji. Analysis of properties and styles of cab front mask of metro vehicle[J]. Electric Locomotives and Mass Transit Vehicles, 2011, 34(1): 21-24. (in Chinese) doi: 10.3969/j.issn.1672-1187.2011.01.007
|
[113] |
赵亚峰, 陈锡嘉. 机车司机室复合材料选用原则[J]. 高科技纤维与应用, 2019, 44(5): 47-53. doi: 10.3969/j.issn.1007-9815.2019.05.006
ZHAO Ya-feng, CHEN Xi-jia. Principles for the selection of composite materials in locomotive cab[J]. Hi-Tech Fiber and Application, 2019, 44(5): 47-53. (in Chinese) doi: 10.3969/j.issn.1007-9815.2019.05.006
|
[114] |
刘钧, 曾竟成, 马良, 等. 高速列车机车用复合材料车头盖的研制[J]. 纤维复合材料, 2003(4): 36-38. doi: 10.3969/j.issn.1003-6423.2003.04.012
LIU Jun, ZENG Jing-cheng, MA Liang, et al. The development of composite frontmask for high-speed train[J]. Fiber Composites, 2003(4): 36-38. (in Chinese) doi: 10.3969/j.issn.1003-6423.2003.04.012
|
[115] |
张胜. 高速机车司机室混杂结构设计与优化[D]. 长沙: 国防科技大学, 2005.
ZHANG Sheng. Design and optimization of combined structure driver cab of high speed train[D]. Changsha: National University of Defense Technology, 2005. (in Chinese)
|
[116] |
夏为林, 曾湘江. FRP复合材料及其在高速列车上的应用[J]. 电力机车技术, 2001, 24(1): 25-27. doi: 10.3969/j.issn.1672-1187.2001.01.009
XIA Wei-lin, ZENG Xiang-jiang. Compound material and its application on high-speed locomotive[J]. Technology for Electric Locomotives, 2001, 24(1): 25-27. (in Chinese) doi: 10.3969/j.issn.1672-1187.2001.01.009
|
[117] |
蔡千华. 新干线电车CFRP车头构件的研究[J]. 国外机车车辆工艺, 2001(2): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-GWJQ200102012.htm
CAI Qian-hua. Development of the CFRP nose body structure of Shinkansen train using carbon fiber reinforced plastics[J]. Foreign Locomotive and Rolling Stock Technology, 2001(2): 38-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWJQ200102012.htm
|
[118] |
冯学斌, 李晓, 曾竟成, 等. 非对称碳-玻璃混合纤维复合材料地铁司机室头罩设计[J]. 铁道机车车辆, 2015, 35(3): 96-99. doi: 10.3969/j.issn.1008-7842.2015.03.24
FENG Xue-bin, LI Xiao, ZENG Jing-cheng, et al. Design of subway driver chamber hood made of asymmetric carbon-glass fiber mixed composite material[J]. Railway Locomotive and Car, 2015, 35(3): 96-99. (in Chinese) doi: 10.3969/j.issn.1008-7842.2015.03.24
|
[119] |
杨梓童. 地铁头车玻璃钢外罩结构设计及分析[D]. 大连: 大连交通大学, 2018.
YANG Zi-tong. Structure design and analysis of GFRP cover for the metro head[D]. Dalian: Dalian Jiaotong University, 2018. (in Chinese)
|
[120] |
方炅任, 张亚楠, 赵川宇, 等. 碳纤维车头在市域快轨车辆上的应用[J]. 铁道机车车辆, 2019, 39(6): 119-125. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201906029.htm
FANG Jiong-ren, ZHANG Ya-nan, ZHAO Chuan-yu, et al. Application of CFRP material in cab mask of rail vehicle[J]. Railway Locomotive and Car, 2019, 39(6): 119-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201906029.htm
|
[121] |
邬志华, 肖加余, 刘钧, 等. 地铁司机室用非对称泡沫夹芯结构抗撞击性能仿真[J]. 复合材料学报, 2013, 30(1): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE2013S1009.htm
WU Zhi-hua, XIAO Jia-yu, LIU Jun, et al. Crashworthiness performance simulation on unsymmetrical foam sandwich structures of subway cab[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 44-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE2013S1009.htm
|
[122] |
GONG Ming, SUN Shou-guang, LI Qiang. Carbon fiber reinforced composite materials for self-supporting subway train cab[J]. Materials Science and Engineering, 2018, 436: 012007-1-5. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=IPFD&filename=CDLK201808001009
|
[123] |
丁叁叁, 田爱琴, 王建军, 等. 高速动车组碳纤维复合材料应用研究[J]. 电力机车与城轨车辆, 2015, 38(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI2015S1001.htm
DING San-san, TIAN Ai-qin, WANG Jian-jun, et al. Research on application of carbon fiber composite in high-speed EMUs[J]. Electric Locomotives and Mass Transit Vehicles, 2015, 38(1): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI2015S1001.htm
|
[124] |
曾竟成, 刘钧, 杜刚, 等. 景区游览车聚合物复合材料车体的研制[J]. 玻璃钢/复合材料, 2001(3): 38-41. doi: 10.3969/j.issn.1003-0999.2001.03.013
ZENG Jing-cheng, LIU Jun, DU Gang, et al. Develop FRP coach for touring train[J]. Fiber Reinforced Plastics/Composites, 2001(3): 38-41. (in Chinese) doi: 10.3969/j.issn.1003-0999.2001.03.013
|
[125] |
刘晓波, 杨颖. 轻量化高性能碳纤维复合材料车体研发关键技术[J]. 合成纤维, 2013, 42(10): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HCXW201310009.htm
LIU Xiao-bo, YANG Ying. Key technologies of lightweight and high-performance carbon fiber composite train carbody[J]. Synthetic Fiber in China, 2013, 42(10): 29-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HCXW201310009.htm
|
[126] |
刘宇, 王峰, 苏强, 等. 轻量化复合材料车体设计与分析[J]. 城市轨道交通研究, 2018, 21(1): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201801010.htm
LIU Yu, WANG Feng, SU Qiang, et al. Design and analysis on lightweight composite car body[J]. Urban Mass Transit, 2018, 21(1): 25-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201801010.htm
|
[127] |
李光友, 倪亭, 郭辉. 轨道交通用碳纤维复合材料的技术进展与应用[J]. 纺织导报, 2020(7): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-FZDB202007007.htm
LI Guang-you, NI Ting, GUO Hui. Technical progress and application of carbon fiber composites for rail transit[J]. China Textile Leader, 2020(7): 24-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZDB202007007.htm
|
[128] |
KIM J S, LEE S J, SHIN K B. Manufacturing and structural safety evaluation of a composite train carbody[J]. Composite Structures, 2005, 78(4): 468-476. http://www.sciencedirect.com/science/article/pii/S0263822305003302
|
[129] |
SEO S I, KIM J S, CHO S H. Development of a hybrid composite bodyshell for tilting trains[J]. Journal of Rail and Rapid Transit, 2008, 222(1): 1-13. doi: 10.1243/09544097JRRT96
|
[130] |
HOZHABR M, HABIBOLLAH M, VINCENZO C, et al. In plane compressive response and crushing of foam filled aluminum honeycombs[J]. Journal of Composite Materials, 2015, 49(26): 3215-3228. doi: 10.1177/0021998314561069
|
[131] |
KIM J S, JEONG J C, CHO S H, et al. Fire resistance evaluation of a train carbody made of composite material by large scale tests[J]. Composite Structures, 2007, 83(3): 295-303. http://www.sciencedirect.com/science/article/pii/S0263822307001274
|
[132] |
JANG B W, LEE J R, PARK A O, et al. A health management algorithm for composite train carbody based on FEM/FBG hybrid method[J]. Composite Structures, 2009, 92(4): 1019-1026. http://www.sciencedirect.com/science/article/pii/S0263822309003894
|
[133] |
ZHANG He, KUANG Ning, SUN Fang-fang, et al. Ultra-light CRH wind deflector fabricated by woven lattice sandwich composites[J]. Composites Science and Technology, 2014, 102(6): 145-151. http://www.sciencedirect.com/science/article/pii/S0266353814002607
|
[134] |
ONDER A, ONEILL C, ROBINSON M. Flying ballast resistance for composite materials in railway vehicle carbody shells[J]. Transportation Research Procedia, 2016, 14: 595-604. doi: 10.1016/j.trpro.2016.05.301
|
[135] |
FAN Hua-lin, OUYANG Jian-feng, SUN Fang-fang, et al. Light-weight design of CRH wind deflector panels based on woven textile sandwich composites[J]. Acta Mechanica Solida Sinica, 2016, 29(2): 208-220. doi: 10.1016/S0894-9166(16)30109-4
|
[136] |
康兴东. 韩国摆式列车复合材料车体的探究及思考[J]. 国外铁道车辆, 2017, 54(6): 12-20. doi: 10.3969/j.issn.1002-7610.2017.06.003
KANG Xing-dong. Research and thought on the carbodies made of composite materials for tilting trains in Korea[J]. Foreign Rolling Stock, 2017, 54(6): 12-20. (in Chinese) doi: 10.3969/j.issn.1002-7610.2017.06.003
|
[137] |
CHVOJAN R, JOZEFY R, MAYER R, et al. Shaker rig test of EB25 GRP boogie[J]. EPJ Web of Conferences, 2010, 6: 19007-1-8. doi: 10.1051/epjconf/20100619007
|
[138] |
虞大联, 邓小军, 刘韶庆, 等. 复合材料技术在转向架中的应用[J]. 电力机车与城轨车辆, 2015, 38: 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI2015S1004.htm
YU Da-lian, DENG Xiao-jun, LIU Shao-qing, et al. Application of composite material technology on bogie[J]. Electric Locomotives and Mass Transit Vehicles, 2015, 38: 17-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI2015S1004.htm
|
[139] |
CHVOJANA J, VACLAVIKA J. Experimental methods for the GRP bogie structure integrity assessment[J]. Procedia Engineering, 2015, 114: 627-634. doi: 10.1016/j.proeng.2015.08.003
|
[140] |
门永林, 楚永萍, 冯遵委. 纤维增强复合材料在转向架上的应用研究[J]. 铁道机车车辆, 2019, 39(3): 92-94, 100. doi: 10.3969/j.issn.1008-7842.2019.03.21
MEN Yong-lin, CHU Yong-ping, FENG Zun-wei. Application research of fiber-reinforced polymer in bogie[J]. Railway Locomotive and Car, 2019, 39(3): 92-94, 100. (in Chinese) doi: 10.3969/j.issn.1008-7842.2019.03.21
|
[141] |
李梁京, 王继荣, 李军. 新型轻材料在转向架部件中的应用[J]. 青岛大学学报(自然科学版), 2017(4): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-QDDD201704009.htm
LI Liang-jing, WANG Ji-rong, LI Jun. The application of new-type lightweight materials in bogie parts[J]. Journal of Qingdao University (Natural Science Edition), 2017(4): 42-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDDD201704009.htm
|
[142] |
宋丕麟. 新型轻量化转向架设计[J]. 科技视界, 2018, 26: 23-24. https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201826008.htm
SONG Pi-lin. New lightweight bogie design[J]. Science and Technology Vision, 2018, 26: 23-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201826008.htm
|
[143] |
KIM J S, YOON H J, SHIN K B. Design of a composite side beam for the railway bogie frame[J]. Materials Science Forum, 2010, 654-656: 2676-2679. doi: 10.4028/www.scientific.net/MSF.654-656.2676
|
[144] |
KIM J S, LEE W G, KIM K, et al. Natural frequency evaluation of a lightweight GFRP composite bogie frame[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16: 105-111. doi: 10.1007/s12541-015-0013-5
|
[145] |
KIM J H, SHIN K B, KIM J S, et al. Optimum design on suspension joint parts of GFRP composite bogie frame with H-shaped side beams for urban railway trains[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(1): 71-76. doi: 10.1007/s12541-012-0010-x
|
[146] |
KIM J S, LEE W G, KIM I K. Manufacturing and testing of a GFRP composite bogie frame with straight side beam members[J]. Journal of Mechanical Science and Technology, 2013, 27(9): 2761-2767. doi: 10.1007/s12206-013-0722-6
|
[147] |
GOO J, KIM J, SHIN K. Evaluation of structural integrity after ballast-flying impact damage of a GFRP lightweight bogie frame for railway vehicles[J]. Journal of Mechanical Science and Technology, 2015, 29(6): 2349-2356. doi: 10.1007/s12206-015-0528-9
|
[148] |
YAO Kai, YANG Ying, LI Hui-min, et al. Material characterization of a multi-cavity composite structure for the bogie frame of urban maglev train[J]. Composites, Part B: Engineering, 2016, 99(15): 277-287. http://www.sciencedirect.com/science/article/pii/S1359836816309672
|
[149] |
梁云, 谌亮, 杨集友, 等. 碳纤维复合材料在轨道交通车辆转向架上的应用[J]. 城市轨道交通研究, 2020(1): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202001032.htm
LIANG Yun, CHEN Liang, YANG Ji-you, et al. Application of carbon fiber composite polymer on urban rail transit vehicle bogy[J]. Urban Mass Transit, 2020(1): 129-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202001032.htm
|
[150] |
MAURIN L, BOUSSOIR J, ROUGEAULT S, et al. FBG-based smart composite bogies for railway applications[C]//IEEE. Optical Fiber Sensors Conference Technical Digest. New York: IEEE, 2002: 91-94.
|
[151] |
王曦, 付晨. 复合材料转向架构架及其疲劳损伤分析方法研究综述[J]. 北京交通大学学报, 2019, 43(1): 42-53. doi: 10.11860/j.issn.1673-0291.2019.01.005
WANG Xi, FU Chen. Review of composite bogie frame and its fatigue damage analysis methods[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 42-53. (in Chinese) doi: 10.11860/j.issn.1673-0291.2019.01.005
|
[152] |
HOU Jin-ping, JERONIMIDIS G. A novel bogie design made of glass fibre reinforced plastic[J]. Materials and Design, 2012, 37(5): 1-7. http://www.sciencedirect.com/science/article/pii/S0261306911008557
|
[153] |
李建利, 张元, 张新元. 碳纤维复合材料刹车片的发展及应用前景[J]. 材料开发与应用, 2012, 27(2): 107-111. doi: 10.3969/j.issn.1003-1545.2012.02.025
LI Jian-li, ZHANG Yuan, ZHANG Xin-yuan. Development and application of carbon fiber composite braking block[J]. Development and Application of Materials, 2012, 27(2): 107-111. (in Chinese) doi: 10.3969/j.issn.1003-1545.2012.02.025
|
[154] |
王京波. 高摩合成闸瓦在快速货车上的适应性[J]. 铁道机车车辆, 2000(3): 8-9. doi: 10.3969/j.issn.1008-7842.2000.03.003
WANG Jing-bo. Applicability of high friction composite brake shoes on speed freight train[J]. Railway Locomotive and Car, 2000(3): 8-9. (in Chinese) doi: 10.3969/j.issn.1008-7842.2000.03.003
|
[155] |
齐海波, 樊云昌, 籍凤秋. 高速列车制动盘材料的研究现状与发展趋势[J]. 石家庄铁道学院学报, 2001(1): 52-57. doi: 10.3969/j.issn.2095-0373.2001.01.013
QI Hai-bo, FAN Yun-chang, JI Feng-qiu. Researching situation and developing trends of brake discs' materials for high speed train[J]. Journal of Shijiazhuang Railway Institute, 2001(1): 52-57. (in Chinese) doi: 10.3969/j.issn.2095-0373.2001.01.013
|
[156] |
高鸣, 陈跃, 张永振. 高速铁路刹车片的研究现状与展望[J]. 热加工工艺, 2010, 39(24): 113-115. doi: 10.3969/j.issn.1001-3814.2010.24.032
GAO Ming, CHEN Yue, ZHANG Yong-zhen. Research status and prospect of high-speed railway brake profile[J]. Hot Working Technology, 2010, 39(24): 113-115. (in Chinese) doi: 10.3969/j.issn.1001-3814.2010.24.032
|
[157] |
王广达, 方玉诚, 罗锡裕. 高速列车摩擦制动材料的研究进展[J]. 中国冶金, 2007(7): 12-15. doi: 10.3969/j.issn.1006-9356.2007.07.003
WANG Guang-da, FANG Yu-cheng, LUO Xi-yu. Research and development of materials for friction braking on high speed train[J]. China Metallurgy, 2007(7): 12-15. (in Chinese) doi: 10.3969/j.issn.1006-9356.2007.07.003
|
[158] |
赵田臣, 孟凡爱, 裴龙刚. 高速列车金属陶瓷复合材料制动闸片研制[J]. 石家庄铁道学院学报, 2004, 17(1): 64-66. doi: 10.3969/j.issn.2095-0373.2004.01.015
ZHAO Tian-chen, MENG Fan-ai, PEI Long-gang. Fabrication of metal-matrix ceramics composite brake for high-speed trains[J]. Journal of Shijiazhuang Railway Institute, 2004, 17(1): 64-66. (in Chinese) doi: 10.3969/j.issn.2095-0373.2004.01.015
|
[159] |
喻亮, 周立智, 姜艳丽. SiC3D/Al复合材料高速列车制动盘紧急制动热流耦合有限元模拟[J]. 热加工工艺, 2019, 48(12): 75-79. https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201912020.htm
YU Liang, ZHOU Li-zhi, JIANG Yan-li. Heat flow finite element simulation of emergency brake of SiC3D/Al composite brake disc for high speed train[J]. Hot Working Technology, 2019, 48(12): 75-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201912020.htm
|
[160] |
金云学, LEE J M, KANG S B. A356/SiCP与列车实用中的有机闸片的滑动摩擦磨损特性[J]. 稀有金属材料与工程, 2008(11): 1956-1960. doi: 10.3321/j.issn:1002-185X.2008.11.016
JIN Yun-xue, LEE J M, KANG S B. Wear characteristics of dry friction between the A356/SiCP composite and applied organic brake pad of medium speed train[J]. Rare Metal Materials and Engineering, 2008(11): 1956-1960. (in Chinese) doi: 10.3321/j.issn:1002-185X.2008.11.016
|
[161] |
盛欢, 王泽华, 邵佳, 等. 高速列车制动盘材料的研究现状与展望[J]. 机械工程材料, 2016, 40(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201601001.htm
SHENG Huan, WANG Ze-hua, SHAO Jia, et al. Research status and prospect of brake disc materials for high-speed train[J]. Materials for Mechanical Engineering, 2016, 40(1): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201601001.htm
|
[162] |
宋宝韫, 高飞, 陈吉光, 等. 高速列车制动盘材料的研究进展[J]. 中国铁道科学, 2004(4): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200404002.htm
SONG Bao-wen, GAO Fei, CHEN Ji-guang, et al. Development of materials for high-speed train brake discs[J]. China Railway Science, 2004(4): 12-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200404002.htm
|
[163] |
MCCONNELL V P. Rail—an evolving market for FRP components[J]. Reinforced Plastics, 2008, 52(11): 24-29. doi: 10.1016/S0034-3617(08)70404-1
|
[164] |
王明猛, 肖守讷, 罗丹. 芳纶纤维复合材料在高速试验列车设备舱底板上的应用研究[J]. 铁道车辆, 2013, 51(5): 8-10. doi: 10.3969/j.issn.1002-7602.2013.05.003
WANG Ming-meng, XIAO Shou-ne, LUO Dan. Application of AFRC on equipment cabin floor on high-speed train[J]. Rolling Stock, 2013, 51(5): 8-10. (in Chinese) doi: 10.3969/j.issn.1002-7602.2013.05.003
|
[165] |
FAN Hua-lin, ZHAO Long, CHEN Hai-long, et al. Ductile deformation mechanisms and designing instructions for integrated woven textile sandwich composites[J]. Composite Science Technology, 2012, 72(12): 1338-1343. doi: 10.1016/j.compscitech.2012.04.017
|
[166] |
宫高霞, 许保磊, 王力, 等. 高速动车组转向架区域裙板结构优化研究[J]. 铁道车辆, 2019(12): 14-16. doi: 10.3969/j.issn.1002-7602.2019.12.006
GONG Gao-xia, XU Bao-lei, WANG Li, et al. Optimization of apron in high-speed EMU bogie[J]. Rolling Stock, 2019(12): 14-16. (in Chinese) doi: 10.3969/j.issn.1002-7602.2019.12.006
|
[167] |
刘钧, 肖加余, 曾竟成, 等. VARTM工艺整体成型复合材料连接裙局部性能试验研究[J]. 复合材料学报, 2010, 27(6): 193-199. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201006034.htm
LIU Jun, XIAO Jia-yu, ZENG Jing-cheng, et al. Experimental study on local properties of the composites skirt integrally manufactured by VARTM[J]. Acta Materiae Compositae Sinica, 2010, 27(6): 193-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201006034.htm
|