Volume 21 Issue 1
Aug.  2021
Turn off MathJax
Article Contents
MA Guang-tong, SUN Zhen-yao, XU Shuai, YAO Chun-xing, REN Guan-zhou, LIANG Shu-lin. Review on permanent magnet direct drive technology of railway vehicles[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 217-232. doi: 10.19818/j.cnki.1671-1637.2021.01.010
Citation: MA Guang-tong, SUN Zhen-yao, XU Shuai, YAO Chun-xing, REN Guan-zhou, LIANG Shu-lin. Review on permanent magnet direct drive technology of railway vehicles[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 217-232. doi: 10.19818/j.cnki.1671-1637.2021.01.010

Review on permanent magnet direct drive technology of railway vehicles

doi: 10.19818/j.cnki.1671-1637.2021.01.010
Funds:

National Natural Science Foundation of China 52072318

Central Guidance Special Subject for Local Science and Technology Development of Sichuan Province 2020ZYD010

Key Research and Development Program of Science and Technology Department of Sichuan Province 2020YFG0354

China Postdoctoral Science Foundation 2020M673282

Independent Subject of State Key Laboratory of Traction Power 2020TPL_T13

More Information
  • Author Bio:

    MA Guang-tong(1982-), male, professor, PhD, gtma@swjtu.edu.cn

  • Received Date: 2020-10-26
  • Publish Date: 2021-08-27
  • The development of domestic and overseas railway vehicles adopting permanent magnet direct drive technology was reviewed. The forms of permanent magnet direct drive bogies structures were summarized, and the characteristics and applications of the shaft-holding direct drive structure and elastic suspension direct drive structure were discussed. The snaking operation stability and curve passing ability of permanent magnet direct drive bogies were analyzed. According to railway vehicle application conditions, the structure design and optimization methods of permanent magnet direct drive motors were discussed in terms of magnetic materials, cooling system, temperature rising effects, motor mass, air gap flux density, back electromotive force suppression, demagnetization faults, and circuit structure. Conventional control strategies for traction motors were analyzed. The current research status of model predictive control and sensorless control technologies were discussed, and moreover, their feasibility and application challenges for permanent magnet direct drive motors were studied. Existing challenges associated with permanent magnet direct drive technology for railway vehicles and outlook for future development were summarized. Research results suggest that the shaft-holding direct drive structure is compact but only suits for low-speed trains, since the motor is greatly affected by wheel-rail vibration and will increase the unsprung mass. The elastic suspension direct drive structure can be suitable for high-speed trains, however, further studies should be investigated on the elastic connection mechanisms between the permanent magnet motor and direct drive bogie, the optimal matching parameters, and the optimal suspended and unsprung mass distributions. The permanent magnet direct drive inboard bearing bogie can shorten the axle length and wheelbase, which is suitable for complex terrains application due to its advantages of low mass and good dynamic properties. The faster and more accurate online diagnosis and warning methods with the fault suppression strategy for the permanent magnet direct drive motors need to be studied, which can adopt the fault diagnosis and prediction strategy based intelligent operation and maintenance technique, so as to give a guidance for the vehicle maintenance. There is also a need for further optimization on the topologies of stator and rotor of permanent magnet direct drive motors, where a more effective cooling structure and an accurate calculation method for the temperature increase should be put forward. Traditional field oriented control and direct torque control have difficulties in achieving the high-torque dynamic response and low-torque ripple simultaneously, while model predictive control is more suitable for high power applications with low switching frequency such as railway vehicles due to their advantages of simple structure and fast dynamic response. However, further studies need to be focused on the reduction of the computational burden and the improvement of steady-state performance. Sensorless control technology saves the internal space of motor and avoids some reliability problems due to the elimination of encoders, which is suitable for direct drive bogies with small internal spaces. The state of art sensorless technology has good performance in medium to high speed ranges. The high-frequency signal injection strategies for zero to low speed can realize the accurate position estimation, but further investigations are needed to eliminate its adverse effects to motor control performance.19 figs, 89 refs.

     

  • loading
  • [1]
    冯江华, 桂卫华, 符敏利, 等. 铁道车辆牵引系统用永磁同步电机比较[J]. 铁道学报, 2007, 29(5): 111-116. doi: 10.3321/j.issn:1001-8360.2007.05.021

    FENG Jiang-hua, GUI Wei-hua, FU Min-li, et al. Comparison of permanent magnet synchronous motors applied to railway vehicle traction system[J]. Journal of the China Railway Society, 2007, 29(5): 111-116. (in Chinese) doi: 10.3321/j.issn:1001-8360.2007.05.021
    [2]
    张江, 钟文生, 刘高坤. 转向架永磁同步电机直接驱动技术在国内外的发展概述[J]. 铁道机车车辆, 2014, 34(3): 79-83. doi: 10.3969/j.issn.1008-7842.2014.03.20

    ZHANG Jiang, ZHONG Wen-sheng, LIU Gao-kun. General description of the development of the direct-drive technology of permanent magnet synchronous motor of bogie at home and abroad[J]. Railway Locomotive and Car, 2014, 34(3): 79-83. (in Chinese) doi: 10.3969/j.issn.1008-7842.2014.03.20
    [3]
    胡土雄, 胡弼, 王伟, 等. 高密度永磁同步电机永磁体失磁特征量分析[J]. 电气工程学报, 2019, 14(2): 121-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DQZH201902021.htm

    HU Tu-xiong, HU Bi, WANG Wei, et al. Analysis of demagnetization characteristics of permanent magnets in high density permanent magnet synchronous motor[J]. Journal of Electrical Engineering, 2019, 14(2): 121-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQZH201902021.htm
    [4]
    JOCKEL A, 谢小海. 新型转向架Syntegra[J]. 国外机车车辆工艺, 2008(6): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GWJQ200806009.htm

    JOCKEL A, XIE Xiao-hai. A new bogie Syntegra[J]. Foreign Locomotive and Rolling Stock Technology, 2008(6): 28-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWJQ200806009.htm
    [5]
    王渤洪. 创新的直接传动动力转向架Syntegra[J]. 机车电传动, 2007(2): 44-51. doi: 10.3969/j.issn.1000-128X.2007.02.013

    WANG Bo-hong. Innovative power bogie Syntegra with direct drive[J]. Electric Drive for Locomotives, 2007(2): 44-51. (in Chinese) doi: 10.3969/j.issn.1000-128X.2007.02.013
    [6]
    吉田耕治, 李玉梅. 直接驱动式牵引电动机[J]. 中国铁路, 2005(11): 61-63. doi: 10.3969/j.issn.1001-683X.2005.11.014

    YOSHIDA Koguji, LI Yu-mei. Direct-drive traction motor[J]. China Railway, 2005(11): 61-63. (in Chinese) doi: 10.3969/j.issn.1001-683X.2005.11.014
    [7]
    MATSUOKA K. Development trend of the permanent magnet synchronous motor for railway traction[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2007, 2(2): 154-161. doi: 10.1002/tee.20121
    [8]
    吴东华, 孙传铭. 基于永磁电机牵引系统高速动车组的研制[J]. 机车电传动, 2019(1): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201901008.htm

    WU Dong-hua, SUN Chuan-ming. Development of high-speed EMUs based on permanent magnet motor traction system[J]. Electric Drive for Locomotives, 2019(1): 35-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201901008.htm
    [9]
    张雄飞. 国内外永磁电机直接驱动式转向架的发展[J]. 机车电传动, 2020(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202003001.htm

    ZHANG Xiong-fei. Development of direct drive bogies with permanent magnet motors at home and abroad[J]. Electric Drive for Locomotives, 2020(3): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC202003001.htm
    [10]
    毕鑫, 马卫华, 罗世辉. 机车转向架通过曲线的动态过程分析[J]. 机械工程学报, 2013, 49(22): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201322024.htm

    BI Xin, MA Wei-hua, LUO Shi-hui. Dynamic process analysis of locomotive bogie curve negotiation[J]. Journal of Mechanical Engineering, 2013, 49(22): 150-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201322024.htm
    [11]
    梁树林, 傅茂海. 内侧悬挂转向架在城轨车辆中的应用研究[J]. 铁道车辆, 2006, 44(4): 4-7, 45. doi: 10.3969/j.issn.1002-7602.2006.04.002

    LIANG Shu-lin, FU Mao-hai. Application of inner suspension bogie in urban rail vehicles[J]. Rolling Stock, 2006, 44(4): 4-7, 45. (in Chinese) doi: 10.3969/j.issn.1002-7602.2006.04.002
    [12]
    邓铁松, 吴磊, 凌亮, 等. 轴箱内置与外置直线电机地铁车辆曲线通过性能对比[J]. 计算机辅助工程, 2015, 24(1): 12-17, 21. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201501003.htm

    DENG Tie-song, WU Lei, LING Liang, et al. Comparison of curving performance of linear induction motor metro vehicles with inside and outside axle boxes[J]. Computer Aided Engineering, 2015, 24(1): 12-17, 21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201501003.htm
    [13]
    杨欣. 160 km·h-1内轴箱转向架总体方案设计及动力学性能研究[D]. 成都: 西南交通大学, 2018.

    YANG Xin. Overall design and research on dynamics performance of the 160 km·h-1 inner axle-box bogie[D]. Chengdu: Southwest Jiaotong University, 2018.
    [14]
    刘德学, 艾正武, 蒋廉华, 等. 大功率交流传动电力机车轮盘制动装置设计[J]. 电力机车与城轨车辆, 2020, 43(4): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI202004005.htm

    LIU De-xue, AI Zheng-wu, JIANG Lian-hua, et al. Design of wheel disc brake device for high power AC drive electric locomotive[J]. Electric Locomotives and Mass Transit Vehicles, 2020, 43(4): 17-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI202004005.htm
    [15]
    刘毅, 韦雪丽, 李谋逵, 等. MTB7型踏面制动器的研制[J]. 铁道机车车辆, 2020, 40(3): 60-66. doi: 10.3969/j.issn.1008-7842.2020.03.12

    LIU Yi, WEI Xue-li, LI Mou-kui, et al. Development of MTB7 tread brake[J]. Railway Locomotive and Car, 2020, 40(3): 60-66. (in Chinese) doi: 10.3969/j.issn.1008-7842.2020.03.12
    [16]
    张建柏, 彭辉水, 倪大成, 等. 高速列车制动技术综述[J]. 机车电传动, 2011(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201104000.htm

    ZHANG Jian-bo, PENG Hui-shui, NI Da-cheng, et al. Braking technology of the high-speed trains[J]. Electric Drive for Locomotives, 2011(4): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201104000.htm
    [17]
    李广慧, 杨广军, 黄醒春, 等. 轮轨作用力计算分析及其校核[J]. 铁道车辆, 2007, 45(11): 5-8, 47. doi: 10.3969/j.issn.1002-7602.2007.11.002

    LI Guang-hui, YANG Guang-jun, HUANG Xing-chun, et al. Calculation and analysis of wheel-rail force and its checking[J]. Rolling Stock, 2007, 45(11): 5-8, 47. (in Chinese) doi: 10.3969/j.issn.1002-7602.2007.11.002
    [18]
    张志和, 李华祥, 李前, 等. 采用永磁电机直接驱动方式的机车转向架[J]. 铁道机车车辆, 2020, 40(3): 39-42. doi: 10.3969/j.issn.1008-7842.2020.03.08

    ZHANG Zhi-he, LI Hua-xiang, LI Qian, et al. The locomotive bogie with permanent-magnet motor and direct driving pattern[J]. Railway Locomotive and Car, 2020, 40(3): 39-42. (in Chinese) doi: 10.3969/j.issn.1008-7842.2020.03.08
    [19]
    原志强, 聂敏. 大功率永磁直驱客运机车的研制[J]. 机车电传动, 2019(1): 40-44, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201901010.htm

    YUAN Zhi-qiang, NIE Min. Development of high-power permanent magnet direct drive passenger locomotive[J]. Electric Drive for Locomotives, 2019(1): 40-44, 50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201901010.htm
    [20]
    银豪, 王腾飞, 肖茂, 等. 新型低地板独立轮对转向架主动控制研究[J]. 机械制造与自动化, 2019, 48(5): 168-170, 192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD201905043.htm

    YIN Hao, WANG Teng-fei, XIAO Mao, et al. Research on active control of new low floor independent wheelset bogies[J]. Machine Building and Automation, 2019, 48(5): 168-170, 192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD201905043.htm
    [21]
    李权, 廖道鹏, 李娜, 等. 独立轮对的结构特征及应用[J]. 铁道机车与动车, 2017(11): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX201711009.htm

    LI Quan, LIAO Dao-peng, LI Na, et al. Structural features and applications of independent wheelsets[J]. Railway Locomotive and Motor Car, 2017(11): 27-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LRJX201711009.htm
    [22]
    梁树林, 张军. 独立车轮与钢轨接触问题的研究[J]. 哈尔滨工业大学学报, 2011, 43(增1): 222-227. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX2011S1048.htm

    LIANG Shu-lin, ZHANG Jun. A study on the contact problem of independent wheel and rail[J]. Journal of Harbin Institute of Technology, 2011, 43(S1): 222-227. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX2011S1048.htm
    [23]
    任尊松, 孙守光, 缪龙秀. 减轻独立轮轮对系统轮轨磨耗方法的探讨[J]. 北京交通大学学报, 2003, 27(1): 16-20. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT200301004.htm

    REN Zun-song, SUN Shou-guang, MIAO Long-xiu. Discussing several methods of reducing the wheel/rail wearing of the independently rolling wheel system[J]. Journal of Beijing Jiaotong University, 2003, 27(1): 16-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT200301004.htm
    [24]
    冯江华. 轨道交通永磁同步牵引系统研究[J]. 机车电传动, 2010(5): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201005004.htm

    FENG Jiang-hua. Study on the permanent magnet synchronous motor drive system of rolling stock[J]. Electric Drive for Locomotives, 2010(5): 15-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201005004.htm
    [25]
    薛蔚, 漆晖, 任利惠, 等. 永磁直驱柔性构架转向架的动力学模型研究[J]. 华东交通大学学报, 2013, 30(2): 58-62. doi: 10.3969/j.issn.1005-0523.2013.02.013

    XUE Wei, QI Hui, REN Li-hui, et al. Study on dynamic model for flexible frame bogie with PMSM[J]. Journal of East China Jiaotong University, 2013, 30(2): 58-62. (in Chinese) doi: 10.3969/j.issn.1005-0523.2013.02.013
    [26]
    黄志辉, 许峻峰. 直驱转向架结构特点与应用展望[J]. 机车电传动, 2013(4): 67-69. doi: 10.3969/j.issn.1000-128X.2013.04.020

    HUANG Zhi-hui, XU Jun-feng. Structure feature and forecast of bogie driven directly[J]. Electric Drive for Locomotives, 2013(4): 67-69. (in Chinese) doi: 10.3969/j.issn.1000-128X.2013.04.020
    [27]
    山长雄亮, 彭惠民. 车辆转向架蛇行运动的发生条件[J]. 国外铁道车辆, 2020, 57(5): 35-38. doi: 10.3969/j.issn.1002-7610.2020.05.009

    YAMAGA Yusuke, PENG Hui-min. Occurrence conditions of hunting motion of railway vehicle bogies[J]. Foreign Rolling Stock, 2020, 57(5): 35-38. (in Chinese) doi: 10.3969/j.issn.1002-7610.2020.05.009
    [28]
    刘伟渭, 姜瑞金, 刘凤伟, 等. 高速列车蛇行运动稳定性研究概述[J]. 河北科技大学学报, 2018, 39(3): 198-203. https://www.cnki.com.cn/Article/CJFDTOTAL-HBQJ201803003.htm

    LIU Wei-wei, JIANG Rui-jin, LIU Feng-wei, et al. Survey on the hunting stability of high-speed trains[J]. Journal of Hebei University of Science and Technology, 2018, 39(3): 198-203. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBQJ201803003.htm
    [29]
    陈杨, 宁静, 王靖铭, 等. 轨道不平顺对高速列车小幅蛇行运动的影响[J]. 现代制造工程, 2019(7): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201907009.htm

    CHEN Yang, NING Jing, WANG Jing-ming, et al. Influence of track irregularity on small hunting of high-speed trains[J]. Modern Manufacturing Engineering, 2019(7): 55-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY201907009.htm
    [30]
    晏永, 曾京, 徐坤, 等. 悬挂阻尼与车辆蛇行运动稳定性关系[J]. 系统仿真学报, https://kns.cnki.net/kcms/detail/11.3092.V.20201030.1446.009.html.

    YAN Yong, ZENG Jing, XU Kun, et al. Modal stability analysis of hunting motion of railway vehicle[J]. Journal of System Simulation, https://kns.cnki.net/kcms/detail/11.3092.V.20201030.1446.009.html. (in Chinese)
    [31]
    干锋, 戴焕云, 宋春元, 等. 车轮高阶不圆对轮对蛇行运动和等效锥度的影响[J]. 铁道学报, 2020, 42(7): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202007009.htm

    GAN Feng, DAI Huan-yun, SONG Chun-yuan, et al. Effect of out-of-round wheel on hunting movement and equivalent conicity of wheelset[J]. Journal of the China Railway Society, 2020, 42(7): 57-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202007009.htm
    [32]
    马卫华, 宋荣荣, 罗世辉. 轴箱悬挂参数对高速动车动力学性能的影响[J]. 内燃机车, 2009(9): 15-19. doi: 10.3969/j.issn.1003-1820.2009.09.004

    MA Wei-hua, SONG Rong-rong, LUO Shi-hui. Influence of journal box suspension parameters on dynamic performance of high-speed motor car[J]. Railway Locomotive and Motor Car, 2009(9): 15-19. (in Chinese) doi: 10.3969/j.issn.1003-1820.2009.09.004
    [33]
    POPP K, KAISER I, KRUESE H. System dynamics of railway vehicles and track[J]. Archive of Applied Mechanics, 2003, 72: 949-961. doi: 10.1007/s00419-002-0261-6
    [34]
    冯遵委, 胡定祥, 楚永萍. 永磁同步电机直接驱动柔性转向架的动力学性能研究[J]. 铁道机车车辆, 2013, 33(3): 73-76. doi: 10.3969/j.issn.1008-7842.2013.03.17

    FENG Zun-wei, HU Ding-xiang, CHU Yong-ping. Research on dynamic performance of direct-driven flexible bogie for permanent-magnetic synchronous motor[J]. Railway Locomotive and Car, 2013, 33(3): 73-76. (in Chinese) doi: 10.3969/j.issn.1008-7842.2013.03.17
    [35]
    黄志辉, 周勇. 直接驱动转向架结构特点及对动力学性能的影响[J]. 铁道机车车辆, 2013, 33(增1): 31-33, 73. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC2013S1011.htm

    HUANG Zhi-hui, ZHOU Yong. Structure feature of bogie driven directly and the influences on dynamic performance of vehicle[J]. Railway Locomotive and Car, 2013, 33(S1): 31-33, 73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC2013S1011.htm
    [36]
    张青松, 陈喜红, 李冠军, 等. 四空气弹簧铰接式动车组转向架[J]. 电力机车与城轨车辆, 2019, 42(3): 31-34, 88. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201903008.htm

    ZHANG Qing-song, CHEN Xi-hong, LI Guan-jun, et al. Articulated bogie equipped with four air springs for EMU[J]. Electric Locomotives and Mass Transit Vehicles, 2019, 42(3): 31-34, 88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201903008.htm
    [37]
    王金生, 吴旭, 马卫华. 铰接式转向架车辆动力学性能分析[J]. 电力机车与城轨车辆, 2020, 43(5): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI202005009.htm

    WANG Jin-sheng, WU Xu, MA Wei-hua. Analysis on the dynamic performance of articulated bogie vehicles[J]. Electric Locomotives and Mass Transit Vehicles, 2020, 43(5): 24-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI202005009.htm
    [38]
    徐磊, 朱孝勇, 张超, 等. 直线旋转永磁电机及其控制技术综述与新发展[J]. 中国电机工程学报, 2020, 40(6): 1972-1985. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202006024.htm

    XU Lei, ZHU Xiao-yong, ZHANG Chao, et al. Overview and new development of linear and rotary permanent magnet machines and control technologies[J]. Proceedings of the CSEE, 2020, 40(6): 1972-1985. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202006024.htm
    [39]
    刘鹏, 原志强, 贾流棡. 大功率永磁直驱系统技术研究及应用[J]. 机车电传动, 2019(6): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201906016.htm

    LIU Peng, YUAN Zhi-qiang, JIA Liu-gang. Research and application of high-power permanent magnet direct drive system technology[J]. Electric Drive for Locomotives, 2019(6): 62-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201906016.htm
    [40]
    符敏利, 陈致初, 王健, 等. 高速动车组永磁牵引电动机研制[J]. 机车电传动, 2016(3): 1-4, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201603001.htm

    FU Min-li, CHEN Zhi-chu, WANG Jian, et al. Development of permanent magnetic traction motors for high-speed EMUs[J]. Electric Drive for Locomotives, 2016(3): 1-4, 9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201603001.htm
    [41]
    JEONG C L, KIM Y K, HUR J. Optimized design of PMSM with hybrid-type permanent magnet for improving performance and reliability[J]. IEEE Transactions on Industry Applications, 2019, 55(5): 4692-4701. doi: 10.1109/TIA.2019.2924614
    [42]
    张道禄, 晏才松. 下一代地铁车辆TQ-250永磁同步牵引电机研制[J]. 电机与控制应用, 2019, 46(11): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXXD201911010.htm

    ZHANG Dao-lu, YAN Cai-song. Development of TQ-250 permanent magnet synchronous traction motor for next generation metro vehicles[J]. Electric Machines and Control Application, 2019, 46(11): 50-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXXD201911010.htm
    [43]
    何思源. 全封闭永磁同步牵引电动机冷却系统设计[J]. 大功率变流技术, 2012(3): 48-53. doi: 10.3969/j.issn.1671-8410-B.2012.03.012

    HE Si-yuan. Design of the cooling system for fully enclosed permanent magnet synchronous traction motor[J]. High Power Converter Technology, 2012(3): 48-53. (in Chinese) doi: 10.3969/j.issn.1671-8410-B.2012.03.012
    [44]
    王健, 符敏利, 陈致初, 等. 地铁车辆用永磁直驱同步牵引电动机冷却结构设计[J]. 机车电传动, 2016(4): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201604002.htm

    WANG Jian, FU Min-li, CHEN Zhi-chu, et al. Cooling structure design of direct-driven permanent magnet synchronous traction motor for metro vehicle[J]. Electric Drive for Locomotives, 2016(4): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201604002.htm
    [45]
    陈萍, 唐任远, 佟文明, 等. 高功率密度永磁同步电机永磁体涡流损耗分布规律及其影响[J]. 电工技术学报, 2015, 30(6): 1-9. doi: 10.3969/j.issn.1000-6753.2015.06.001

    CHEN Ping, TANG Ren-yuan, TONG Wen-ming, et al. Permanent magnet eddy current loss and its influence of high power density permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 1-9. (in Chinese) doi: 10.3969/j.issn.1000-6753.2015.06.001
    [46]
    傅雪军, 杨婷莉, 王晓元. 大功率永磁直驱电力机车牵引电机关键技术研究[J]. 铁道机车车辆, 2020, 40(3): 34-38. doi: 10.3969/j.issn.1008-7842.2020.03.07

    FU Xue-jun, YANG Ting-li, WANG Xiao-yuan. Study on key technologies of traction motor for high-power permanent magnet direct drive electric locomotive[J]. Railway Locomotive and Car, 2020, 40(3): 34-38. (in Chinese) doi: 10.3969/j.issn.1008-7842.2020.03.07
    [47]
    HAN Xue-yan, YANG Fei, TANG Ren-yuan, et al. Research on model of temperature field and structure optimization for disk type permanent magnet synchronous motor[C]//IEEE. Proceedings of the 2010 International Conference on Electrical and Control Engineering. New York: IEEE, 2010: 5892-5895.
    [48]
    BOGLIETTI A, COSSALE M, VASCHETTO S, et al. Thermal conductivity evaluation of fractional-slot concentrated winding machines[J]. IEEE Transactions on Industry Applications, 2016, 53(3): 2059-2065. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/020418976500.html
    [49]
    HOWEY D A, HOLMES A S, PULLEN K R. Measurement and CFD prediction of heat transfer in air-cooled disc-type electrical machines[J]. IEEE Transactions on Industry Applications, 2011, 47(4): 1716-1723. doi: 10.1109/TIA.2011.2156371
    [50]
    刘雄, 陈文光, 许峻峰, 等. 地铁永磁直驱牵引系统优化策略与仿真分析[J]. 机车电传动, 2016(3): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201603008.htm

    LIU Xiong, CHEN Wen-guang, XU Jun-feng, et al. Optimizing strategy and simulation analysis for direct-drive traction system of PMSM[J]. Electric Drive for Locomotives, 2016(3): 24-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201603008.htm
    [51]
    FANG Shu-hua, LIU Huan, WANG Hai-tao, et al. High power density PMSM with lightweight structure and high-performance soft magnetic alloy core[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(2): 1-5. http://ieeexplore.ieee.org/document/8606133
    [52]
    庄艳. 永磁伺服电动机电磁场与温度场耦合计算及冷却系统设计[D]. 沈阳: 沈阳工业大学, 2011.

    ZHUANG Yan. Coupling calculation of electromagnetic filed and cooling system design for PM servo motor[D]. Shenyang: Shenyang University of Technology, 2011. (in Chinese)
    [53]
    鲍晓华, 刘佶炜, 孙跃, 等. 低速大转矩永磁直驱电机研究综述与展望[J]. 电工技术学报, 2019, 34(6): 1148-1160. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201906004.htm

    BAO Xiao-hua, LIU Ji-wei, SUN Yue, et al. Review and prospect of low-speed high-torque permanent magnet machines[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1148-1160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201906004.htm
    [54]
    LI Y X, ZHU Z Q. Cogging torque and unbalanced magnetic force prediction in PM machines with axial-varying eccentricity by superposition method[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-4. http://ieeexplore.ieee.org/document/7917249
    [55]
    ZHU Z Q, WU L J, MOHD JAMIL M L. Influence of pole and slot number combinations on cogging torque in permanent-magnet machines with static and rotating eccentricities[J]. IEEE Transactions on Industry Applications, 2014, 50(5): 3265-3277. doi: 10.1109/TIA.2014.2308363
    [56]
    YANG Hao-dong, CHEN Yang-sheng. Influence of radial force harmonics with low mode number on electromagnetic vibration of PMSM[J]. IEEE Transactions on Energy Conversion, 2014, 29(1): 38-45. doi: 10.1109/TEC.2013.2290304
    [57]
    柯以诺. 永磁同步电机传动系统在电动车辆上的应用[J]. 大功率变流技术, 2009(5): 31-37. doi: 10.3969/j.issn.1671-8410-B.2009.05.008

    KE Yi-nuo. Application of PMSM drive system for electric vehicle[J]. High Power Converter Technology, 2009(5): 31-37. (in Chinese) doi: 10.3969/j.issn.1671-8410-B.2009.05.008
    [58]
    冯江华. 高速动车组永磁同步牵引系统的研制[J]. 机车电传动, 2016(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201604001.htm

    FENG Jiang-hua. Research on the permanent magnet synchronous motor drive system for high-speed EMUs[J]. Electric Drive for Locomotives, 2016(4): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201604001.htm
    [59]
    周永刚, 陈超录, 刘雄. 地铁永磁直驱牵引系统设计方法[J]. 机车电传动, 2015(6): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201506011.htm

    ZHOU Yong-gang, CHEN Chao-lu, LIU Xiong. Metro permanent magnet direct-driving traction system design method[J]. Electric Drive for Locomotives, 2015(6): 34-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201506011.htm
    [60]
    冯江华. 轨道交通永磁同步牵引系统的发展概况及应用挑战[J]. 大功率变流技术, 2012(3): 1-7. doi: 10.3969/j.issn.1671-8410-B.2012.03.003

    FENG Jiang-hua. Development overview and application challenges of permanent magnet synchronous traction system for rail transit[J]. High Power Converter Technology, 2012(3): 1-7. (in Chinese) doi: 10.3969/j.issn.1671-8410-B.2012.03.003
    [61]
    冯江华, 桂卫华. 永磁同步电动机定子磁链观测方法研究[J]. 电气传动, 2008, 38(6): 20-22. doi: 10.3969/j.issn.1001-2095.2008.06.005

    FENG Jiang-hua, GUI Wei-hua. Research of stator flux observer of permanent magnet synchronous machines[J]. Electric Drive, 2008, 38(6): 20-22. (in Chinese) doi: 10.3969/j.issn.1001-2095.2008.06.005
    [62]
    DOU R J, SONG F Z, LIU H N, et al. Demagnetization quantification of PMSM based on support vector regression[C]//IEEE. 2018 Prognostics and System Health Management Conference. New York: IEEE, 2018: 619-623.
    [63]
    DANG L, BERNARD N, BRACIKOWSKI N, et al. Analytical model and reluctance network for high-speed PMSM design optimization application to electric vehicles[C]//IEEE. 2016 XXⅡ International Conference on Electrical Machines. New York: IEEE, 2016: 1359-1365.
    [64]
    FENG Guo-dong, LAI Chun-yan, KAR N C. An analytical solution to optimal stator current design for PMSM torque ripple minimization with minimal machine losses[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 7655-7665. doi: 10.1109/TIE.2017.2694354
    [65]
    AZAR Z, ZHU Z Q, OMBACH G. Influence of electric loading and magnetic saturation on cogging torque, back-emf and torque ripple of PM machines[J]. IEEE Transactions on Magnetics, 2012, 48(10): 2650-2658. doi: 10.1109/TMAG.2012.2201493
    [66]
    ZHU Z Q, WU D, CHU W Q. On-load performance in IPM machines having different slot/pole number combinations considering local magnetic saturation[C]//IEEE. 2016 IEEE Vehicle Power and Propulsion Conference. New York: IEEE, 2016: 1-6.
    [67]
    DHULIPATI H, GHOSH E, MUKUNDAN S, et al. Advanced design optimization technique for torque profile improvement in six-phase PMSM using supervised machine learning for direct-drive EV[J]. IEEE Transactions on Energy Conversion, 2019, 34(4): 2041-2051. doi: 10.1109/TEC.2019.2933619
    [68]
    BARCARO M, BIANCHI N. Interior PM machines using ferrite to replace rare-earth surface PM machines[J]. IEEE Transactions on Industry Applications, 2014, 50(2): 979-985. doi: 10.1109/TIA.2013.2272549
    [69]
    许峻峰, 冯江华, 许建平. 永磁同步电动机控制策略综述[J]. 机车电传动, 2005(3): 7-11, 76. doi: 10.3969/j.issn.1000-128X.2005.03.002

    XU Jun-feng, FENG Jiang-hua, XU Jian-ping. Overview on control strategies of permanent magnet synchronous motor[J]. Electric Drive for Locomotives, 2005(3): 7-11, 76. (in Chinese) doi: 10.3969/j.issn.1000-128X.2005.03.002
    [70]
    BOLOGNANI S, PERETTI L, ZIGLIOTTO M. Design and implementation of model predictive control for electrical motor drives[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1925-1936. doi: 10.1109/TIE.2008.2007547
    [71]
    YANG Yong, WEN Hui-qing, FAN Ming-di, et al. A constant switching frequency model predictive control without weighting factors for T-type single-phase three-level inverters[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5153-5164. doi: 10.1109/TIE.2018.2868290
    [72]
    AGUIRRE M, KOURO S, ROJAS C A, et al. Switching frequency regulation for FCS-MPC based on a period control approach[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5764-5773. doi: 10.1109/TIE.2017.2777385
    [73]
    OIKONOMOU N, GUTSCHER C, KARAMANAKOS P, et al. Model predictive pulse pattern control for the five-level active neutral-point-clamped inverter[J]. IEEE Transactions on Industry Applications, 2013, 49(6): 2583-2592. doi: 10.1109/TIA.2013.2263273
    [74]
    尚敬, 刘可安, 年晓红, 等. 牵引电动机无速度传感器及带速度重投控制[J]. 中国电机工程学报, 2006, 26(15): 118-123. doi: 10.3321/j.issn:0258-8013.2006.15.022

    SHANG Jing, LIU Ke-an, NIAN Xiao-hong, et al. Speed sensorless control and restarting at unknown speed of traction motor[J]. Proceedings of the CSEE, 2006, 26(15): 118-123. (in Chinese) doi: 10.3321/j.issn:0258-8013.2006.15.022
    [75]
    XU Dian-guo, WANG Bo, ZHANG Guo-qiang, et al. A review of sensorless control methods for AC motor drives[J]. CES Transactions on Electrical Machines and Systems, 2018, 2(1): 104-115. doi: 10.23919/TEMS.2018.8326456
    [76]
    BOLOGNANI S, OBOE R, ZIGLIOTTO M. Sensorless full-digital PMSM drive with EKF estimation of speed and rotor position[J]. IEEE Transactions on Industrial Electronics, 1999, 46(1): 184-191. doi: 10.1109/41.744410
    [77]
    BOLOGNANI S, TUBIANA L, ZIGLIOTTO M. Extended Kalman filter tuning in sensorless PMSM drives[J]. IEEE Transactions on Industry Application, 2003, 39(6): 1741-1747. doi: 10.1109/TIA.2003.818991
    [78]
    张晓光, 赵克, 孙力, 等. 永磁同步电机滑模变结构调速系统动态品质控制[J]. 中国电机工程学报, 2011, 31(15): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201115007.htm

    ZHANG Xiao-guang, ZHAO Ke, SUN Li, et al. Sliding mode control of permanent magnet synchronous motor based on a novel exponential reaching law[J]. Proceedings of the CSEE, 2011, 31(15): 47-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201115007.htm
    [79]
    刘颖, 周波, 方斯琛. 基于新型扰动观测器的永磁同步电机滑模控制[J]. 中国电机工程学报, 2010, 30(9): 80-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201009013.htm

    LIU Ying, ZHOU Bo, FANG Si-chen. Sliding mode control of PMSM based on a novel disturbance observer[J]. Proceedings of the CSEE, 2010, 30(9): 80-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201009013.htm
    [80]
    ZHU Ying, CHENG Ming, HUA Wei, et al. Sensorless control strategy of electrical variable transmission machines for wind energy conversion systems[J]. IEEE Transactions on Magnetics, 2013, 49(7): 3383-3386. doi: 10.1109/TMAG.2013.2243904
    [81]
    禹继贤, 颜钢锋, 张斌. 基于MRAS的永磁同步电机无传感器控制[J]. 机电工程, 2015, 32(9): 1222-1228. https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC201509017.htm

    YU Ji-xian, YAN Gang-feng, ZHANG Bin. Sensorless control of permanent magnet synchronous motors based on MRAS[J]. Journal of Mechanical and Electrical Engineering, 2015, 32(9): 1222-1228. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JDGC201509017.htm
    [82]
    ZHANG Guo-qiang, WANG Guo-lin, XU Dian-guo, et al. ADALINE-network-based PLL for position sensorless interior permanent magnet synchronous motor drives[J]. IEEE Transactions on Power Electronics, 2016, 31(2): 1450-1460. doi: 10.1109/TPEL.2015.2424256
    [83]
    LIN F J, HUNG Y C, CHEN J M, et al. Sensorless IPMSM drive system using saliency back-EMF-based intelligent torque observer with MTPA control[J]. IEEE Transactions on Industrial Informatics, 2014, 10(2): 1226-1241. doi: 10.1109/TII.2014.2305591
    [84]
    LIN F J, YANG K J, SUN I F, et al. Intelligent position control of permanent magnet synchronous motor using recurrent fuzzy neural cerebellar model articulation network[J]. IET Electric Power Applications, 2015, 9(3): 248-264. doi: 10.1049/iet-epa.2014.0088
    [85]
    GAO Shi-gen, DONG Hai-rong, NING Bin, et al. Nonlinear mapping-based feedback technique of dynamic surface control for the chaotic PMSM using neural approximation and parameter identification[J]. IET Control Theory and Applications, 2018, 12(6): 819-827. doi: 10.1049/iet-cta.2017.0550
    [86]
    CORLEY M J, LORENZ R D. Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds[J]. IEEE Transactions on Industry Applications, 1998, 34(4): 784-789. doi: 10.1109/28.703973
    [87]
    陈飞, 白连平, 张巧杰. 基于脉振高频信号注入法的PMSM无传感器控制[J]. 微电机, 2014, 47(1): 61-65, 70. doi: 10.3969/j.issn.1001-6848.2014.01.014

    CHEN Fei, BAI Lian-ping, ZHANG Qiao-jie. Sensorless control of permanent magnet synchronous motor based on fluctuating high-frequency signal injection[J]. Micromotors, 2014, 47(1): 61-65, 70. (in Chinese) doi: 10.3969/j.issn.1001-6848.2014.01.014
    [88]
    刘海东, 周波, 郭鸿浩, 等. 脉振高频信号注入法误差分析[J]. 电工技术学报, 2015, 30(6): 38-44. doi: 10.3969/j.issn.1000-6753.2015.06.005

    LIU Hai-dong, ZHOU Bo, GUO Hong-hao, et al. Error analysis of high frequency pulsating signal injection method[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 38-44. (in Chinese) doi: 10.3969/j.issn.1000-6753.2015.06.005
    [89]
    THAN H, KUNG Y S, HUANG L C. Digital hardware implementation of a sensorless speed controller for PMSM drives using HF signal injection and EKF[C]//IEEE. Proceedings of the IEEE International Conference on Advanced Materials for Science and Engineering: Innovation, Science and Engineering, IEEE-ICAMSE 2016. New York: IEEE, 2016: 192-195.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1508) PDF downloads(1029) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return