Citation: | JING Lin, LIU Kai. Review on wheel-rail dynamic responses caused by wheel tread defects[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 285-315. doi: 10.19818/j.cnki.1671-1637.2021.01.014 |
[1] |
张雪珊, 肖新标, 金学松. 高速车轮椭圆化问题及其对车辆横向稳定性的影响[J]. 机械工程学报, 2008, 44(3): 50-56. doi: 10.3321/j.issn:0577-6686.2008.03.009
ZHANG Xue-shan, XIAO Xin-biao, JIN Xue-song. Influences of high speed railway wheels ovalization on vehicle lateral stability[J]. Chinese Journal of Mechanical Engineering, 2008, 44(3): 50-56. (in Chinese) doi: 10.3321/j.issn:0577-6686.2008.03.009
|
[2] |
刘逍远. 铁路车轮非圆化对车辆一轨道系统动力学行为的影响[D]. 成都: 西南交通大学, 2012.
LIU Xiao-yuan. Influence of out-of-round railway wheel on vehicle-track system dynamic behavior[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)
|
[3] |
NIELSEN J C O, JOHANSSON A. Out-of-round railway wheels-a literature survey[J]. Journal of Rail and Rapid Transit, 2000, 214: 79-91. doi: 10.1243/0954409001531351
|
[4] |
TAO Gong-quan, WEN Ze-feng, JIN Xue-song, et al. Polygonisation of railway wheels: a critical review[J]. Railway Engineering Science, 2020, DOI: 10.1007/s40534-020-00222-x.
|
[5] |
闫子全, 孙林林, 肖俊恒, 等. 高速铁路公务工程前沿基础理论与科学问题-轮轨关系[J]. 铁道建筑, 2018, 58(11): 13-19. doi: 10.3969/j.issn.1003-1995.2018.11.03
YAN Zi-quan, SUN Lin-lin, XIAO Jun-heng, et al. Cutting-edge theory and scientific problems of high speed railway maintenance engineering: wheel-rail interaction[J]. Railway Engineering, 2018, 58(11): 13-19. (in Chinese) doi: 10.3969/j.issn.1003-1995.2018.11.03
|
[6] |
HERTZ H. Ueber die Berührung fester elastischer Körper[J]. Journal Für Die Reine Und Angewandte Mathematik, 1882, 92: 156-171. http://www.degruyter.com/view/j/crll.1882.issue-92/crll.1882.92.156/crll.1882.92.156.xml?format=PAP
|
[7] |
KNOTHE K. History of wheel/rail contact mechanics: from Redtenbacher to Kalker[J]. Vehicle System Dynamics, 2008, 46(1/2): 9-26. doi: 10.1080/00423110701586469
|
[8] |
AYASSE J B, CHOLLET H. Wheel-Rail Contact Handbook of Railway Vehicle Dynamics[M]. Boca Raton: FL CRC Press, 2006.
|
[9] |
KALKER J J. Survey of wheel-rail rolling contact theory[J]. Vehicle System Dynamics, 1979, 8(4): 317-358. doi: 10.1080/00423117908968610
|
[10] |
CARTER F W. On the action of locomotive driving wheel[J]. Proceeding of Royal Society of London, 1926, 112(760): 151-157.
|
[11] |
PIOTROWSKI J, CHOLLET H. Wheel-rail contact models for vehicle system dynamics including multi-point contact[J]. Vehicle System Dynamics, 2005, 43(6/7): 455-483. doi: 10.1080/00423110500141144?tab=permissions
|
[12] |
JOHNSON K L. The effect of a tangential contact force upon the rolling motion of an elastic sphere on a plane[J]. Journal of Applied Mechanics, 1958, 25(3): 339-346. http://www.ams.org/mathscinet-getitem?mr=102215
|
[13] |
VERMEULEN P L, JOHNSON K L. Contact of non-spherical bodies transmitting tangential forces[J]. Journal of Applied Mechanics, 1964(31): 338-340. http://adsabs.harvard.edu/abs/1964JAM....31..338V
|
[14] |
孔祥安, 江晓禹, 金学松. 固体接触力学[M]. 北京: 中国铁道出版社, 1999.
KONG Xing-an, JIANG Xiao-yu, JIN Xue-song. Solid Contact Mechanics[M]. Beijing: China Railway Publishing House, 1999. (in Chinese)
|
[15] |
金学松, 张立民. 轮轨蠕滑力分析计算中几种蠕滑动力模型的比较[J]. 铁道学报, 1998, 20(增): 56-61.
JIN Xue-song, ZHANG Li-min. A comparison of important creep-force models in the analysis of wheel-rail rolling contact[J]. Journal of the China Railway Society, 1998, 20(S): 56-61. (in Chinese)
|
[16] |
KALKER J J. On the rolling contact of two elastic bodies in the presence of dry friction[D]. Netherlands: Delft University of Technology, 1967.
|
[17] |
金学松. 轮轨蠕滑理论及其试验研究[D]. 成都: 西南交通大学, 1999.
JIN Xue-song. Study on creep theory of wheel and rail system and its experiment[D]. Chengdu: Southwest Jiaotong University, 1999. (in Chinese)
|
[18] |
KALKER J J. A fast algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11(1): 1-13. doi: 10.1080/00423118208968684
|
[19] |
KALKER J J. Wheel-rail rolling contact theory[J]. Wear, 1991, 144(1): 243-261. http://www.sciencedirect.com/science/article/pii/B9780444887740500201
|
[20] |
VOLLEBREGT E, IWNICKI S, SHACKLETON P. Assessing the accuracy of different simplified frictional rolling contact algorithms[J]. Vehicle System Dynamics, 2012, 50(1): 1-17. doi: 10.1080/00423114.2011.552618
|
[21] |
SHEN Z Y, HERDRICK J K, ELKINS J A. A comparison of alternative creep-force models for rail vehicle dynamic analysis[J]. Vehicle System Dynamics, 1983, 12(1/2/3): 79-83. doi: 10.1080/00423118308968725
|
[22] |
SHEN Zhi-yun, LI Zi-li. A fast non-steady state creep force model based on the simplified theory[J]. Wear, 1996, 191(1/2): 242-244. http://www.sciencedirect.com/science/article/pii/0043164895066926
|
[23] |
LI Zi-li. Wheel-rail rolling contact and its application to wear simulation[D]. Netherlands: Delft University of Technology, 2002.
|
[24] |
POLACH O. Fast wheel-rail forces calculation computer code[J]. Vehicle System Dynamics, 2000, 33(S1): 728-739. http://www.mendeley.com/research/fast-wheelrail-forces-calculation-computer-code-bt-16th-lavsd-symposium-dynamics-vehicles-roads-trac/
|
[25] |
金学松, 张卫华. 非赫兹接触轮轨力数表TPLR的研究[J]. 西南交通大学学报, 1996, 31(6): 646-651. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT606.011.htm
JIN Xue-song, ZHANG Wei-hua. Development of wheel/rail non-Hertzian contact creep force table[J]. Journal of Southwest Jiaotong University, 1996, 31(6): 646-651. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT606.011.htm
|
[26] |
PASCAL J P. About multi-Hertzian-contact hypothesis and equivalent conicity in the case of S1002 and UIC60 analytical wheel/rail profiles[J]. Vehicle System Dynamics, 1993, 22(2): 57-78. doi: 10.1080/00423119308969021
|
[27] |
丁军君. 基于蠕滑机理的重载货车车轮磨耗研究[D]. 成都: 西南交通大学, 2012.
DING Jun-jun. Research on wheel wear of heavy haul freight car based on the creep mechanism[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)
|
[28] |
PIOTROWSKI J, CHOLLET H. Wheel-rail contact models for vehicle system dynamics including multi-point contact[J]. Vehicle system dynamics, 2005, 43(6/7): 455-483. doi: 10.1080/00423110500141144?tab=permissions
|
[29] |
LINDER C H. Verschleiß von eisenbahnrädern mit unrundheiten[D]. Zurich: Eidgenössische Technische Hochschule Zürich, 1997.
|
[30] |
PIOTROWSKI J, KIK W. A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations[J]. Vehicle System Dynamics, 2008, 46(1/2): 27-48. doi: 10.1080/00423110701586444?cookieSet=1
|
[31] |
LIU Bin-bin, BRUNI S, VOLLEBREGT E. A non-Hertzian method for solving wheel-rail normal contact problem taking into account the effect of yaw[J]. Vehicle System Dynamics, 2016, 54(9): 1226-1246. doi: 10.1080/00423114.2016.1196823
|
[32] |
AYASSE J B, CHOLLET H. Determination of the wheel rail contact patch in semi-Hertzian conditions[J]. Vehicle System Dynamics, 2005, 43(3): 161-172. doi: 10.1080/00423110412331327193
|
[33] |
SICHANI M S, ENBLOM R, BERG M. A novel method to model wheel-rail normal contact in vehicle dynamics simulation[J]. Vehicle System Dynamics, 2014, 52(12): 1752-1764. doi: 10.1080/00423114.2014.961932
|
[34] |
SUN Yu, ZHAI Wan-ming, GUO Yu. A robust non-Hertzian contact method for wheel-rail normal contact analysis[J]. Vehicle System Dynamics, 2018, 56(12): 1899-1921. doi: 10.1080/00423114.2018.1439587
|
[35] |
SICHANI M S, ENBLOM R, BERG M. An alternative to FASTSIM for tangential solution of the wheel-rail contact[J]. Vehicle System Dynamics, 2016, 54(6): 748-764. doi: 10.1080/00423114.2016.1156135
|
[36] |
SICHANI M S, ENBLOM R, BERG M. A fast wheel-rail contact model for application to damage analysis in vehicle dynamics simulation[J]. Wear, 2016, 366/367: 123-130. doi: 10.1016/j.wear.2016.06.015
|
[37] |
PIOTROWSKI J, LIU Bin-bin, BRUNI S. The Kalker book of tables for non-Hertzian contact of wheel and rail[J]. Vehicle System Dynamics, 2017, 55(6): 875-901. doi: 10.1080/00423114.2017.1291980
|
[38] |
汪登荣. 新型轮轨关系试验台研究[D]. 成都: 西南交通大学, 2012.
WANG Deng-rong. Research on a new wheel and rail relationship test-rig[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)
|
[39] |
严隽耄, 王开文, 傅茂海. 机车车辆轮-轮与轮-轨接触关系的比较[J]. 铁道学报, 1994, 16: 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB4S1.002.htm
YAN Jun-mao, WANG Kai-wen, FU Mao-hai. A comparison of rail vehicle wheel-rail and wheel-roller contact relations[J]. Journal of the China Railway Society, 1994, 16: 17-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB4S1.002.htm
|
[40] |
MATSUMOTO A, SATO Y, NAKATA M, et al. Wheel-rail contact mechanics at full scale on the test stand[J]. Wear, 1996, 191(1/2): 101-106. http://www.sciencedirect.com/science/article/pii/0043164895067108
|
[41] |
DOIH, MIYAMOTO T, NISHIYAMA Y, et al. A new experimental device to investigate creep forces between wheel and rail[J]. Wear, 2011, 271: 40-46. doi: 10.1016/j.wear.2010.10.026
|
[42] |
CHANG Chong-yi, CHEN Bo, CAI Yuan-wu, et al. An experimental study of high speed wheel-rail adhesion characteristics in wet condition on full scale roller rig[J]. Wear, 2019, 440: 203092. http://www.sciencedirect.com/science/article/pii/S0043164818314455
|
[43] |
BAEK K, KYOGOKU K, NAKAHARA T. An experimental investigation of transient traction characteristics in rolling-sliding wheel/rail contacts under dry-wet conditions[J]. Wear, 2007, 263: 169-179. doi: 10.1016/j.wear.2007.01.067
|
[44] |
ZHU Y, CHEN X, WANG W, et al. A study on iron oxides and surface roughness in dry and wet wheel-rail contacts[J]. Wear, 2015, 328: 241-248. http://www.sciencedirect.com/science/article/pii/S0043164815001349
|
[45] |
CHEN H, BAN T, ISHIDA M, et al. Experimental investigation of influential factors on adhesion between wheel and rail under wet conditions[J]. Wear, 2008, 265(9/10): 1504-1511. http://www.mendeley.com/research/experimental-investigation-influential-factors-adhesion-between-wheel-rail-under-wet-conditions/
|
[46] |
EGANA J I, VINOLAS J, NEGRETE G N. Effect of liquid high positive friction (HPF) modifier on wheel-rail contact and rail corrugation[J]. Tribology International, 2005, 38(8): 769-774. doi: 10.1016/j.triboint.2004.11.006
|
[47] |
NIELSEN J C O. High-frequency vertical wheel-rail contact forces-Validation of a prediction model by field testing[J]. Wear, 2008, 265(9/10): 1465-1471. http://www.sciencedirect.com/science/article/pii/S0043164808001701
|
[48] |
YE Yun-guang, SHI Da-chuan, KRAUSE P, et al. Wheel flat can cause or exacerbate wheel polygonization[J]. Vehicle System Dynamics, 2020, 58(10): 1575-1604. doi: 10.1080/00423114.2019.1636098
|
[49] |
JIN Xue-song, WU Lei, FANG Jian-ying, et al. An investigation into the mechanism of the polygonal wear of metro train wheels and its effect on the dynamic behaviour of a wheel/rail system[J]. Vehicle System Dynamics, 2012, 50(12): 1817-1834. doi: 10.1080/00423114.2012.695022
|
[50] |
QU Sheng, ZHU Bin, ZENG Jing, et al. Experimental investigation for wheel polygonisation of high-speed trains[J]. Vehicle System Dynamics, 2020, DOI: 10.1080/00423114.2020.1772984.
|
[51] |
宋志坤, 岳仁法, 胡晓依, 等. 车轮多边形对车辆振动及轮轨力的影响[J]. 北京交通大学学报, 2017, 41(6): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201706016.htm
SONG Zhi-kun, YUE Ren-fa, HU Xiao-yi, et al. Influence of wheel polygon on vehicle vibration and wheel/rail force[J]. Journal of Beijing Jiaotong University, 2017, 41(6): 88-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201706016.htm
|
[52] |
张浩然. 车轮多边形对高速列车振动响应和构架疲劳寿命影响研究[D]. 北京: 北京交通大学, 2018.
ZHANG Hao-ran. Research on the effect of wheel polygon on vibration response and frame fatigue life of high-speed train[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
|
[53] |
WEI Zi-long, SHEN Chen, LI Zi-li, et al. Wheel-rail impact at crossings: relating dynamic frictional contact to degradation[J]. Journal of Computational and Nonlinear Dynamics, 2017, 12(4): 041016. doi: 10.1115/1.4035823
|
[54] |
宋志坤, 孙琛, 成棣, 等. 车轮型面圆弧参数及其对轮轨接触和车辆动力学影响研究[J]. 中国铁道科学, 2019, 40(6): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201906014.htm
SONG Zhi-kun, SUN Chen, CHENG Di, et al. Research on arc parameters of wheel profile and its influence on wheel-rail contact vehicle dynamics[J]. China Railway Science, 2019, 40(6): 104-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201906014.htm
|
[55] |
ANTUNES P, MAGALHAES H, AMBROSIO J, et al. A co-simulation approach to the wheel-rail contact with flexible railway track[J]. Multibody System Dynamics, 2019, 45(2): 245-272. doi: 10.1007/s11044-018-09646-0
|
[56] |
ZHAO Xin, LI Zi-li. The solution of frictional wheel-rail rolling contact with a 3D transient finite element model: Validation and error analysis[J]. Wear, 2011, 271(1/2): 444-452. http://www.sciencedirect.com/science/article/pii/S0043164810003418
|
[57] |
MAGEL E E, LIU Y. On some aspects of the wheel/rail interaction[J]. Wear, 2014, 314(1/2): 132-139.
|
[58] |
WU Ya-ping, WEI Yun-peng, LIU Yang, et al. 3-D analysis of thermal-mechanical behavior of wheel/rail sliding contact considering temperature characteristics of materials[J]. Applied Thermal Engineering, 2017, 115: 455-462. doi: 10.1016/j.applthermaleng.2016.12.136
|
[59] |
赵鑫, 温泽峰, 王衡禹, 等. 三维高速轮轨瞬态滚动接触有限元模型及其应用[J]. 机械工程学报, 2013, 49(18): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318001.htm
ZHAO Xin, WEN Ze-feng, WANG Heng-yu, et al. 3D transient finite element model for high-speed wheel-rail rolling contact and its application[J]. Journal of Mechanical Engineering, 2013, 49(18): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318001.htm
|
[60] |
JING Lin, HAN Liang-liang. Further study on the wheel-rail impact response induced by a single wheel flat: the coupling effect of strain rate and thermal stress[J]. Vehicle System Dynamics, 2017, 55(12): 1946-1972. doi: 10.1080/00423114.2017.1340651
|
[61] |
HAN Liang-liang, JING Lin, ZHAO Long-mao. Finite element analysis of the wheel-rail impact behavior induced by a wheel flat for high-speed trains: the influence of strain rate[J]. Journal of Rail and Rapid Transit, 2018, 232(4): 990-1004. doi: 10.1177/0954409717704790
|
[62] |
LIU Kai, JING Lin. A finite element analysis-based study on the dynamic wheel-rail contact behavior caused by wheel polygonization[J]. Journal of Rail and Rapid Transit, 2020, 234(10): 1285-1298. doi: 10.1177/0954409719891549
|
[63] |
寇峻瑜, 赵鑫, 张鹏, 等. 高速滚滑下轮轨表层材料的应变率水平估计[J]. 工程力学, 2019, 36(4): 239-247. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201904027.htm
KOU Jun-yu, ZHAO Xin, ZHANG Peng, et al. Estimation of strain rates for wheel-rail surface materials under high-speed rolling-sliding contact[J]. Engineering Mechanics, 2019, 36(4): 239-247. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201904027.htm
|
[64] |
AGLAN H A, LIU Z Y, HASSAN M F, et al. Mechanical and fracture behavior of bainitic rail steel[J]. Journal of Materials Processing Technology, 2004, 151(1/2/3): 268-274. http://www.sciencedirect.com/science/article/pii/S0924013604003905
|
[65] |
ZHANG M R, GU H C. Fracture toughness of nanostructured railway wheels[J]. Engineering Fracture Mechanics, 2008, 75(18): 5113-5121. doi: 10.1016/j.engfracmech.2008.07.007
|
[66] |
张青松, 李国栋, 戴光泽, 等. 1050车轮钢组织和力学性能各向异性的研究[J]. 中国材料进展, 2017, 36(6): 461-466. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201706011.htm
ZHANG Qing-song, LI Guo-dong, DAI Guang-ze, et al. Investigation on anisotropic microstructure and mechanical properties of 1050 wheel steel[J]. Materials China, 2017, 36(6): 461-466. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201706011.htm
|
[67] |
王强, 赵永翔, 王欢. 铁路D1车轮钢的疲劳可靠性寿命与强度的试验及表征[J]. 机械工程学报, 2014, 37(14): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201414007.htm
WANG Qiang, ZHAO Yong-xiang, WANG Huan. Experiments and characteristic on the probabilistic fatigue lives and strengths of D1 railway wheel steel[J]. Journal of Mechanical Engineering, 2014, 37(14): 50-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201414007.htm
|
[68] |
田越, 程育仁. U71Mn轨钢拉伸应力应变曲线的Ramberg-Osgood模型拟合[J]. 物理测试, 1991(5): 30-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLCS199105014.htm
TIAN Yue, CHENG Yu-ren. Fitting of tensile stress-strain curves of U71Mn rail steel using the Ramberg-Osgood model[J]. Physics Examination and Testing, 1991(5): 30-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLCS199105014.htm
|
[69] |
宿皓, 陈林, 郭飞翔, 等. U75V重轨钢的疲劳寿命分析[J]. 内蒙古科技大学学报, 2017, 36(4): 347-350. https://www.cnki.com.cn/Article/CJFDTOTAL-BTGX201704009.htm
SU Hao, CHEN Lin, GUO Fei-xiang, et al. Fatigue life analysis of U75V heavy rail steel[J]. Journal of Inner Mongolia University of Science and Technology, 2017, 36(4): 347-350. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BTGX201704009.htm
|
[70] |
徐周, 王德永, 陈开来, 等. 微镁处理对车轮钢组织与性能的调控作用[J]. 钢铁研究学报, 2018, 30(8): 633-641. https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201808007.htm
XU Zhou, WANG De-yong, CHEN Kai-lai, et al. Effect of magnesium addition on microstructure and mechanical properties in wheel steel[J]. Journal of Iron and Steel Research, 2018, 30(8): 633-641. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-IRON201808007.htm
|
[71] |
龚帅, 任学冲, 马英霞, 等. 热处理工艺对高速车轮钢显微组织和断裂韧性的影响[J]. 材料热处理学报, 2015, 36(4): 150-155. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201504026.htm
GONG Shuai, REN Xue-chong, MA Ying-xia, et al. Effect of heat-treatment on microstructure and fracture toughness of high-speed railway wheel steel[J]. Transactions of Materials and Heat Treatment, 2015, 36(4): 150-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201504026.htm
|
[72] |
DHUA S K, RAY A, SEN S K, et al. Influence of nonmetallic inclusion characteristics on the mechanical properties of rail steel[J]. Journal of Materials Engineering and Performance, 2000, 9(6): 700-709. doi: 10.1361/105994900770345584
|
[73] |
程育仁, 彭湘, 侯炳麟, 等. 轨钢在冲击载荷作用下表面裂纹的扩展行为[J]. 铁道学报, 1991, 13(4): 87-92. doi: 10.3321/j.issn:1001-8360.1991.04.012
CHENG Yu-ren, PENG Xiang, HOU Bing-lin, et al. The growth behavior of fatigue surface cracks in rail steel under an impact load[J]. Journal of the China Railway Society, 1991, 13(4): 87-92. (in Chinese) doi: 10.3321/j.issn:1001-8360.1991.04.012
|
[74] |
NAKKALIL R, HOMADAY J R, BASSIM M N. Characterization of the compression properties of rail steels at high temperatures and strain rates[J]. Material Science and Engineering: A, 1991, 141(2): 247-260. doi: 10.1016/0921-5093(91)90774-H
|
[75] |
田越, 程育仁, 刘学文. 高应变率下U71Mn轨钢动态力学性能研究[J]. 中国铁道科学, 1992, 13(2): 34-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK199202004.htm
TIAN Yue, CHENG Yu-ren, LIU Xue-wen. Studies on the dynamic behavior of U71Mn rail steel under high strain rates[J]. China Railway Science, 1992, 13(2): 34-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK199202004.htm
|
[76] |
汪振兴, 田晓耕, 干聪, 等. 单轴压缩下U75V钢动态力学行为及其修正J-C本构模型[J]. 材料热处理学报, 2019, 40(7): 156-164. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201907029.htm
WANG Zhen-xing, TIAN Xiao-geng, GAN Cong, et al. Dynamic mechanical behavior of U75V steel under uniaxial compression and its modified J-C constitutive model[J]. Transactions of Materials and Heat Treatment, 2019, 40(7): 156-164. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSCL201907029.htm
|
[77] |
LIU Pei-jie, QUAN Yan-ming, DING Guo. Dynamic mechanical characteristics and constitutive modeling of rail steel over a wide range of temperatures and strain rates[J]. Advances in Materials Science and Engineering, 2019, 2019: 6862391. http://www.researchgate.net/publication/331578116_Dynamic_Mechanical_Characteristics_and_Constitutive_Modeling_of_Rail_Steel_over_a_Wide_Range_of_Temperatures_and_Strain_Rates
|
[78] |
JING Lin, HAN Liang-liang, ZHAO Long-mao, et al. The dynamic tensile behavior of railway wheel steel at high strain rates[J]. Journal of Materials Engineering and Performance, 2016, 25(11): 4959-4966. doi: 10.1007/s11665-016-2359-y
|
[79] |
JING Lin, SU Xing-ya, ZHAO Long-mao. The dynamic compressive behavior and constitutive modeling of D1 railway wheel steel over a wide range strain rates and temperatures[J]. Results in Physics, 2017, 7: 1452-1461. doi: 10.1016/j.rinp.2017.04.015
|
[80] |
韩亮亮, 张莹, 敬霖, 等. 不同应变速率下D1车轮钢的拉伸性能与断口形貌[J]. 机械工程材料, 2016, 40(11): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201611005.htm
HAN Liang-liang, ZHANG Ying, JING Lin, et al. Tensile properties and fractography of D1 wheel steel at different strain rates[J]. Materials for Mechanical Engineering, 2016, 40(11): 16-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201611005.htm
|
[81] |
HAN Liang-liang, JING Lin, WEI Hua-cheng, et al. Experimental characterization of the dynamic compressive properties of railway wheel steel[J]. Materials Science Forum, 2016, 867: 29-33. doi: 10.4028/www.scientific.net/MSF.867.29
|
[82] |
SU Xing-ya, ZHOU Lun, JING Lin. et al. Experimental investigation and constitutive description of railway wheel/rail steels under medium-strain-rate tensile loading[J]. Journal of Materials Engineering and Performance, 2020, 29(3): 2015-2025. doi: 10.1007/s11665-020-04720-1
|
[83] |
苏兴亚. 复杂载荷下高速轮/轨钢的动态力学行为与本构关系[D]. 成都: 西南交通大学, 2019.
SU Xing-ya. The dynamic mechanical behavior and constitutive relationship of high-speed wheel/rail steels under complex loadings[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
|
[84] |
任学冲, 齐冀, 张斌, 等. 温度及应变速率对高速车轮钢形变行为的影响[J]. 中国铁道科学, 2015, 36(3): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201503015.htm
REN Xue-chong, QI Ji, ZHANG Bin, et al. Influence of temperature and strain rate on deformation behavior of high speed wheel steel[J]. China Railway Science, 2015, 36(3): 88-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201503015.htm
|
[85] |
钱利锋, 侯英玮. U75V钢流动应力的试验研究[J]. 锻压技术, 2009, 34(5): 132-135. doi: 10.3969/j.issn.1000-3940.2009.05.035
QIAN Li-feng, HOU Ying-wei. Experimental research on flow stress of U75V steel[J]. Forging and Stamping Technology, 2009, 34(5): 132-135. (in Chinese) doi: 10.3969/j.issn.1000-3940.2009.05.035
|
[86] |
WANG Jian-jun, GUO Wei-guo, GAO Xiao-sheng, et al. The third-type of strain aging and the constitutive modeling of a Q235B steel over a wide range of temperatures and strain rates[J]. International Journal of Plasticity, 2015, 65: 85-107. doi: 10.1016/j.ijplas.2014.08.017
|
[87] |
OLOFSSON U, SUNDYALL K. Influence of leaf, humidity and applied lubrication on friction in the wheel-rail contact: pin-on-disc experiments[J]. Journal of Rail and Rapid Transit, 2004, 218(3): 235-242. doi: 10.1243/0954409042389364
|
[88] |
KUMAGAI N, ISHIKAWA H, HAGA K, et al. Factors of wheel flats occurrence and preventive measures[J]. Wear, 1991, 144(1): 277-287. http://www.sciencedirect.com/science/article/pii/B9780444887740500225
|
[89] |
凌亮, 曹亚博, 肖新标, 等. 车轮擦伤对高速轮轨接触行为的影响[J]. 铁道学报, 2015, 37(7): 32-39. doi: 10.3969/j.issn.1001-8360.2015.07.006
LING Liang, CAO Ya-bo, XIAO Xin-biao, et al. Effect of wheel flats on the high-speed wheel-rail contact behavior[J]. Journal of the China Railway Society, 2015, 37(7): 32-39. (in Chinese) doi: 10.3969/j.issn.1001-8360.2015.07.006
|
[90] |
STEENBERGEN M J M M. The role of the contact geometry in wheel-rail impact due to wheel flats: Part Ⅱ[J]. Vehicle System Dynamics, 2008, 46(8): 713-717. doi: 10.1080/00423110701584027
|
[91] |
AAR. Effect of flat wheels on track and equipment[R]. Washington DC: AAR, 1952.
|
[92] |
JOHANSSON A, NIELSEN J C O. Out-of-round railway wheels-wheel rail contact forces and track response derived from field tests and numerical simulations[J]. Journal of Rail and Rapid Transit, 2003, 217(2): 135-146. doi: 10.1243/095440903765762878
|
[93] |
NEWTON S G, CLARK R A. An investigation into the dynamic effects on the track of wheel flats on railway vehicles[J]. Journal of Mechanical Engineering Science, 1979, 21(4): 287-297. doi: 10.1243/JMES_JOUR_1979_021_046_02
|
[94] |
FERMER M, NIELSEN J C O. Wheel/rail contact forces for flexible versus solid wheels due to tread irregularities[J]. Vehicle System Dynamics, 1994, 23(1): 142-157. doi: 10.1080/00423119308969511
|
[95] |
CHEN Y Z, HE C G, ZHAO X J, et al. The influence of wheel flats formed from different braking conditions on rolling contact fatigue of railway wheel[J]. Engineering Failure Analysis, 2018, 93: 183-199. doi: 10.1016/j.engfailanal.2018.07.006
|
[96] |
JERJEUS J, ODENMARCK C, LUNDEN R, et al. Full-scale railway wheel flat experiments[J]. Journal of Rail and Rapid Transit, 1998, 213(1): 1-13.
|
[97] |
翟婉明. 铁路车轮扁疤的动力学效应[J]. 铁道车辆, 1994(7): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL407.000.htm
ZHAI Wan-ming. Dynamic effect of railway wheel flat[J]. Rolling Stock, 1994(7): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL407.000.htm
|
[98] |
VER I L, VENTRES C S, MYLES M M. Wheel/rail noise- Part Ⅲ: impact noise generation by wheel and rail discontinuities[J]. Journal of Sound and Vibration, 1976, 46(3): 395-417. doi: 10.1016/0022-460X(76)90863-4
|
[99] |
王其昌. 车轮扁疤冲击分析[J]. 西南交通大学学报, 1991, 26(4): 45-48. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT199104006.htm
WANG Qi-chang. Analysis of impact influence of wheel tread flat spot on railway track[J]. Journal of Southwest Jiaotong University, 1991, 26(4): 45-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT199104006.htm
|
[100] |
王建斌, 邬平波, 唐兆. 车轮扁疤引发附加冲击力对车轴应力谱影响的研究[J]. 铁道学报, 2006, 28(1): 39-43. doi: 10.3321/j.issn:1001-8360.2006.01.009
WANG Jian-bin, WU Ping-bo, TANG Zhao. Research on the axle stress spectrum considering extra wheelflat impact forces[J]. Journal of the China Railway Society, 2006, 28(1): 39-43. (in Chinese) doi: 10.3321/j.issn:1001-8360.2006.01.009
|
[101] |
STEENBERGEN M J M M. The role of the contact geometry in wheel-rail impact due to wheel flats[J]. Vehicle System Dynamics, 2007, 45(12): 1097-1116. doi: 10.1080/00423110701199982
|
[102] |
BOGDEVICIUS M, ZYGIENE R, BUREIKA G, et al. An analytical mathematical method for calculation of the dynamic wheel-rail impact force caused by wheel flat[J]. Vehicle System Dynamics, 2016: 689-705. http://smartsearch.nstl.gov.cn/paper_detail.html?id=7c90be3562c76a80c0800ac27c5d092a
|
[103] |
JENKINS H H, STEPHENSON J E, CLAYTON G A, et al. The effect of track and vehicle parameters on wheel/rail vertical dynamic loads[J]. Railway Engineering Journal, 1974, 3(1): 2-16. http://www.researchgate.net/publication/279904808_the_effect_of_track_and_vehicle_parameters_on_wheelrail_vertical_dynamic_loads
|
[104] |
WU T X, THOMPSON D J. A hybrid model for the noise generation due to railway wheel flats[J]. Journal of Sound and Vibration, 2002, 251(1): 115-139. doi: 10.1006/jsvi.2001.3980
|
[105] |
NIELSEN J C O, IGELAND A. Vertical dynamic interaction between train and track influence of wheel and track imperfections[J]. Journal of Sound and Vibration, 1995, 187(5): 825-839. doi: 10.1006/jsvi.1995.0566
|
[106] |
姜涛, 孙守光, 缪龙秀, 等. 车轮扁疤动力冲击的仿真研究及其检测原理[J]. 铁道车辆, 1998, 36(5): 25-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL805.006.htm
JIANG Tao, SUN Shou-guang, MIAO Long-xiu, et al. The emulation research for the dynamic impact by the wheel flat and the inspection principles[J]. Rolling Stock, 1998, 36(5): 25-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL805.006.htm
|
[107] |
DUKKIPATI R V, DONG R. Impact loads due to wheel flats and shells[J]. Vehicle System Dynamics, 1999, 31(1): 1-22. doi: 10.1076/vesd.31.1.1.2097
|
[108] |
UZZAL R U A, AHMED A K W, RAKHEJA S. Analysis of pitch plane railway vehicle-track interactions due to single and multiple wheel flats[J]. Journal of Rail and Rapid Transit, 2009, 223(F4): 375-390. http://www.researchgate.net/publication/239407018_Analysis_of_pitch_plane_railway_vehicletrack_interactions_due_to_single_and_multiple_wheel_flats
|
[109] |
UZZAL R U A, AHMED A K W, BHAT R B. Modelling, validation and analysis of a three-dimensional railway vehicle-rack system model with linear and nonlinear track properties in the presence of wheel flats[J]. Vehicle System Dynamics, 2013, 51(11): 1659-1721. doi: 10.1080/00423114.2013.822987
|
[110] |
BAEZA L, RODA A, CARBALLEIRA J, et al. Railway train-track dynamics for wheelflats with improved contact models[J]. Nonlinear Dynamics, 2006, 45(3): 385-397. doi: 10.1007/s11071-005-9014-8
|
[111] |
ZHU J J, AHMED W, RAKHEJA S, et al. Impact load due to railway wheels with multiple flats predicted using an adaptive contact model[J]. Proceedings of the Institution of Mechanical Engineers, 2009, 223: 391-403. doi: 10.1243/09544097JRRT258
|
[112] |
PIERINGER A, KROPP W, NIELSEN J C O. The influence of contact modelling on simulated wheel/rail interaction due to wheel flats[J]. Wear, 2014, 314(1): 273-281. http://www.sciencedirect.com/science/article/pii/S0043164813006017
|
[113] |
FORD R A J, THOMPSON D J. Simplified contact filters in wheel rail noise prediction[J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 807-818. http://www.sciencedirect.com/science/article/pii/S0022460X05007704
|
[114] |
ZHAI Wan-ming, CAI Cheng-biao, WANG Qi-chang, et al. Dynamic effects of vehicles on tracks in the case of raising train speeds[J]. Journal of Rail and Rapid Transit, 2001, 215(2): 125-135. doi: 10.1243/0954409011531459
|
[115] |
杨新文, 翟婉明. 高速铁路轮轨噪声理论计算与控制研究[J]. 中国铁道科学, 2011, 32(1): 133-135. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201101026.htm
YANG Xin-wen, ZHAI Wan-ming. Theoretical calculation and control study on the wheel/rail noises of high speed railway[J]. China Railway Science, 2011, 32(1): 133-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201101026.htm
|
[116] |
张大伟, 王开云, 翟婉明. 30 t轴重货车-重载铁路车轮扁疤动力效应分析[J]. 西南科技大学学报, 2015, 30(4): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XNGX201504004.htm
ZHANG Da-wei, WANG Kai-yun, ZHAI Wan-ming. Effect of wheel flats on wheel/rail dynamic interaction in 30-ton heavy-haul railway[J]. Journal of Southwest University of Science and Technology, 2015, 30(4): 15-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNGX201504004.htm
|
[117] |
LIU Yang, LIU Jian-xin, GUO Yu-jiang. Study on dynamic simulation input form of locomotive wheel flat[J]. Applied Mechanics and Materials, 2012, 215/216: 946-949. doi: 10.4028/www.scientific.net/AMM.215-216.946
|
[118] |
王忆佳, 曾京, 高浩, 等. 车轮扁疤引起的轮轨冲击分析[J]. 西南交通大学学报, 2014, 49(4): 700-705. doi: 10.3969/j.issn.0258-2724.2014.04.022
WANG Yi-jia, ZENG Jing, GAO Hao, et al. Analysis of wheel/rail impact induced by wheel flats[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 700-705. (in Chinese) doi: 10.3969/j.issn.0258-2724.2014.04.022
|
[119] |
张涛, 陈再刚, 翟婉明, 等. 车轮扁疤冲击下重载机车齿轮传动系统动态特性分析[J]. 科学通报, 2019, 64(25): 2566-2572. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201925003.htm
ZHANG Tao, CHEN Zai-gang, ZHAI Wan-ming, et al. Dynamic performance of gear transmission system in a heavy-haul locomotive under wheel flat impact[J]. Chinese Science Bulletin, 2019, 64(25): 2566-2572. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201925003.htm
|
[120] |
REN Zun-song. An investigation on wheel/rail impact dynamics with a three-dimensional flat model[J]. Vehicle System Dynamics, 2018, 57(3): 369-388. doi: 10.1080/00423114.2018.1469774
|
[121] |
BIAN Jian, GU Yuan-tong, MURRAY M H. A dynamic wheel-rail impact analysis of railway track under wheel flat by finite element analysis[J]. Vehicle System Dynamics, 2013, 51(6): 784-797. doi: 10.1080/00423114.2013.774031
|
[122] |
KANOJE N K, SHARMA S C, HARSHA S P. Wheel-rail and wheel-flat as a coupled system: Contact dynamics modeling with finite element analysis[J]. Journal of Coupled Systems and Multiscale Dynamics, 2014, 2(1): 20-27. doi: 10.1166/jcsmd.2014.1036
|
[123] |
JING Lin, LIU Zhuo, LIU Kai. A mathematically-based study of the random wheel-rail contact irregularity by wheel out-of-roundness[J]. Vehicle System Dynamics, 2020, DOI: 10.1080/00423114.2020.1815809.
|
[124] |
刘卓, 敬霖. 基于位移激励法车轮扁疤引起的轮轨动态响应有限元分析[J]. 机械, 2020, 47(6): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-MECH202006006.htm
LIU Zhuo, JING Lin. Finite element analysis of the dynamic wheel-rail response by wheel flat based on displacement excitation method[J]. Machinery, 2020, 47(6): 37-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MECH202006006.htm
|
[125] |
WU Xing-wen, RAKHEJA S, AHMED A K W, et al. Influence of a flexible wheelset on the dynamic responses of a high-speed railway car due to a wheel flat[J]. Journal of Rail and Rapid Transit, 2018, 232(4): 1033-1048. doi: 10.1177/0954409717708895
|
[126] |
邹航宇, 张卫华, 王志伟. 车轮扁疤对高速列车齿轮箱动态特性影响分析[J]. 铁道机车车辆, 2018, 38(3): 29-33, 40. doi: 10.3969/j.issn.1008-7842.2018.03.06
ZOU Hang-yu, ZHANG Wei-hua, WANG Zhi-wei. Influence analysis of wheel flat on dynamic characteristics of high-speed train gearbox[J]. Railway Locomotive and Car, 2018, 38(3): 29-33, 40. (in Chinese) doi: 10.3969/j.issn.1008-7842.2018.03.06
|
[127] |
杨光, 任尊松, 袁雨青. 车轮扁疤伤损对高速列车轮对动力学性能影响[J]. 北京交通大学学报, 2018, 42(3): 103-111. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201803014.htm
YANG Guang, REN Zun-song, YUAN Yu-qing. Influence of wheel flat on dynamic performance of high-speed train wheelset[J]. Journal of Beijing Jiaotong University, 2018, 42(3): 103-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201803014.htm
|
[128] |
张斌, 付秀琴. 铁路车轮、轮箍踏面剥离的类型及形成机理[J]. 中国铁道科学, 2001, 22(2): 73-78. doi: 10.3321/j.issn:1001-4632.2001.02.011
ZHANG Bin, FU Xiu-qin. Type and formation mechanism of railway wheel and tire tread spall[J]. China Railway Science, 2001, 22(2): 73-78. (in Chinese) doi: 10.3321/j.issn:1001-4632.2001.02.011
|
[129] |
LIU Wei, MA Wei-hua, LUO Shi-hui, et al. Research into the problem of wheel tread spalling caused by wheelset longitudinal vibration[J]. Vehicle System Dynamics, 2015, 53(4): 546-567. doi: 10.1080/00423114.2015.1008015
|
[130] |
张军, 王雪萍, 马贺. 增黏砂对机车车轮踏面剥离影响的试验研究[J]. 机械工程学报, 2018, 54(8): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201808009.htm
ZHANG Jun, WANG Xue-ping, MA He. Experimental study on influence of sanding on peeling of wheel tread of locomotive[J]. Journal of Mechanical Engineering, 2018, 54(8): 68-73. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201808009.htm
|
[131] |
王文健, 刘启跃. 车轮踏面剥离机理研究[J]. 机械, 2004, 31(6): 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-MECH200406005.htm
WANG Wen-jian, LIU Qi-Yue. Research review on wheel tread spalling[J]. Machinery, 2004, 31(6): 12-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MECH200406005.htm
|
[132] |
郭俊, 王文健, 张伟, 等. 车轮踏面剥离试验研[J]. 铁道车辆, 2006, 44(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200604000.htm
GUO Jun, WANG Wen-jian, ZHANG Wei, et al. Test and research on wheel tread peeling[J]. Rolling Stock, 2006, 44(4): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL200604000.htm
|
[133] |
CUMMINGS S M, LONSDALE C P. Wheel spalling literature review[C]// ASME. ASME Rail Transportation Division Fall Conference. New York: ASME, 2008: 24-25.
|
[134] |
陶贵闯, 赵秀娟, 潘金芝, 等. D2高速车轮钢在滑动磨损下的白层形成与剥落[J]. 摩擦学学报, 2018, 38(4): 437-444. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201804008.htm
TAO Gui-chuang, ZHAO Xiu-juan, PAN Jin-zhi, et al. Formation and exfoliation of the while etching layer of D2 high speed wheel steel under sliding wear[J]. Tribology, 2018, 38(4): 437-444. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX201804008.htm
|
[135] |
丛韬, 韩建民, 张关震, 等. 铁路车轮轮辋疲劳裂纹和踏面剥离掉块的微观伤损因素分析[J]. 中国铁道科学, 2017, 38(5): 93-99. doi: 10.3969/j.issn.1001-4632.2017.05.13
CONG Tao, HAN Jian-min, ZHANG Guan-zhen, et al. Analysis of micro damage factors of shattered rim and tread shelling of railway wheel[J]. China Railway Science, 2017, 38(5): 93-99. (in Chinese) doi: 10.3969/j.issn.1001-4632.2017.05.13
|
[136] |
张关震, 任瑞铭, 吴斯, 等. 不均匀组织对高速动车组车轮踏面剥离损伤的影响[J]. 中国铁道科学, 2019, 40(5): 80-86. doi: 10.3969/j.issn.1001-4632.2019.05.11
ZHANG Guan-zhen, REN Rui-ming, WU Si, et al. Influence of non-uniform microstructure on shelling damage of wheel tread for high speed EMU[J]. China Railway Science, 2019, 40(5): 80-86. (in Chinese) doi: 10.3969/j.issn.1001-4632.2019.05.11
|
[137] |
WANG Wen-jian, GUO Jun, LIU Qi-yue. Experimental study on wear and spalling behaviors of railway wheel[J]. Chinese Journal of Mechanical Engineering, 2013, 26(6): 1243-1249. doi: 10.3901/CJME.2013.06.1243
|
[138] |
KATO T, SUGETA A, NAKAYAMA E. Investigation of influence of white layer geometry on spalling property in railway wheel steel[J]. Wear, 2011, 271(1): 400-407. http://www.sciencedirect.com/science/article/pii/S0043164810003583
|
[139] |
ZENG Dong-fang, LU Lian-tao, GONG Yan-hua, et al. Influence of solid solution strengthening on spalling behavior of railway wheel steel[J]. Wear, 2017, 372/373: 158-168.
|
[140] |
STONE D H, CARLSON F G, BACHHUBER C G. Effect of brake-system components on wheel spalling[C]//ASME. Proceedings of the 1999 ASME/IEEE Joint Railroad Conference. New York: ASME, 1999: 177-183.
|
[141] |
汪洋. 地铁列车车轮踏面环状剥离的分析[J]. 电力机车与城轨车辆, 2003, 26(4): 67-68. doi: 10.3969/j.issn.1672-1187.2003.04.023
WANG Yang. Analysis of circular spalling of wheel tread for metro train[J]. Electric Locomotives and Mass Transit Vehicles, 2003, 26(4): 67-68. (in Chinese) doi: 10.3969/j.issn.1672-1187.2003.04.023
|
[142] |
CUMMINGS S M, MCCABE T, GOSSELIN D. Brake shoes and thermal mechanical shelling[C]// ASME. ASME Rail Transportation Division Fall Conference. New York: ASME, 2009, 24-25.
|
[143] |
KALOUSEK J, MAGEL E, STRASSER J, et al. Tribological interrelationship of seasonal fluctuations of freight car wheel wear, contact fatigue shelling and composition brakeshoe consumption[J]. Wear, 1996, 191: 210-218. doi: 10.1016/0043-1648(95)06700-0
|
[144] |
王玉辉. 机车整体车轮踏面剥离原因分析与研究[J]. 铁道机车车辆, 2012, 32(1): 87-88, 112. doi: 10.3969/j.issn.1008-7842.2012.01.023
WANG Yu-hui. Reason analysis and research for tread peeling on locomotive solid wheel[J]. Railway Locomotive and Car, 2012, 32(1): 87-88, 112. (in Chinese) doi: 10.3969/j.issn.1008-7842.2012.01.023
|
[145] |
王晨, 罗世辉, 马卫华. 机车轮对纵向振动与踏面剥离研究分析[J]. 内燃机车, 2013(2): 31-34. doi: 10.3969/j.issn.1003-1820.2013.02.009
WANG Chen, LUO Shi-hui, MA Wei-hua. Research and analysis on longitudinal vibration and tread spalling of locomotive wheelset[J]. Railway Locomotive and Motor Car, 2013(2): 31-34. (in Chinese) doi: 10.3969/j.issn.1003-1820.2013.02.009
|
[146] |
КРАСНОВ О Г. 车轮踏面出现缺陷时转向架承载铸件的承载能力[J]. 国外机车车辆工艺, 2017(5): 30-35, 40. https://www.cnki.com.cn/Article/CJFDTOTAL-GWJQ201705008.htm
КРАСНОВ О Г. Bearing capacity of bogie bearing castings with defects on wheel tread[J]. Foreign Locomotive and Rolling Stock Technology, 2017(5): 30-35, 40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWJQ201705008.htm
|
[147] |
汪金余. 车轮内部损伤及踏面剥离的研究[D]. 大连: 大连交通大学, 2018.
WANG Jin-yu. Research on wheel internal damage and tread spelling[D]. Dalian: Dalian Jiaotong University, 2018. (in Chinese)
|
[148] |
郭鑫. 车轮踏面剥离对轮轨动态接触行为和疲劳寿命的影响[D]. 成都: 西南交通大学, 2020.
GUO Xin. Influence of tread spalling on dynamic wheel-rail contact behavior and fatigue life[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese)
|
[149] |
TAO Gong-quan, WANG Lin-feng, WEN Ze-feng, et al. Experimental investigation into the mechanism of the polygonal wear of electric locomotive wheels[J]. Vehicle System Dynamics, 2018, 56(6): 883-899. doi: 10.1080/00423114.2017.1399210
|
[150] |
金学松, 吴越, 梁树林. 车轮非圆化磨耗问题研究进展[J]. 西南交通大学学报, 2018, 53(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201801001.htm
JIN Xue-song, WU Yue, LIANG Shu-lin. Mechanisms and countermeasures of out-of-roundness wear on railway vehicle wheels[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201801001.htm
|
[151] |
朱海燕, 胡华涛, 尹必超, 等. 轨道车辆车轮多边形研究进展[J]. 交通运输工程学报, 2020, 20(1): 102-119. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001011.htm
ZHU Hai-yan, HU Hua-tao, YIN Bi-chao, et al. Research progress on wheel polygons of rail vehicles[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 102-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001011.htm
|
[152] |
王忆佳. 车轮踏面伤损对高速列车动力学行为的影响[D]. 成都: 西南交通大学, 2014.
WANG Yi-jia. Effect of wheel tread damage on dynamic behavior of high speed trains[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese)
|
[153] |
KAPER H P. Wheel corrugation on Netherlands railways (NS): origin and effects on "polygonization" in particular[J]. Journal of Sound and Vibration, 1988, 120(2): 267-274. doi: 10.1016/0022-460X(88)90434-8
|
[154] |
BROMMUNDT E. A simple mechanism for the polygonalization of railway wheels by wear[J]. Mechanics Research Communications, 1997, 24(4): 435-442. doi: 10.1016/S0093-6413(97)00047-5
|
[155] |
MORYS B. Enlargement of out-of-round wheel profiles on high speed trains[J]. Journal of Sound and Vibration, 1999, 227(5): 965-978. doi: 10.1006/jsvi.1999.2055
|
[156] |
陈光雄, 金学松, 邬平波, 等. 车轮多边形磨耗机理的有限元研究[J]. 铁道学报, 2011, 33(1): 14-18. doi: 10.3969/j.issn.1001-8360.2011.01.003
CHEN Guang-xiong, JIN Xue-song, WU Ping-bo, et al. Finite element study on the generation mechanism of polygonal wear of railway wheels[J]. Journal of the China Railway Society, 2011, 33(1): 14-18. (in Chinese) doi: 10.3969/j.issn.1001-8360.2011.01.003
|
[157] |
崔大宾, 梁树林, 宋春元, 等. 高速车轮非圆化现象及其对轮轨行为的影响[J]. 机械工程学报, 2013, 48(18): 8-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318002.htm
CUI Da-bin, LIANG Shu-lin, SONG Chun-yuan, et al. Out-of-round high-speed wheel and its influence on wheel/rail behavior[J]. Journal of Mechanical Engineering, 2013, 48(18): 8-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318002.htm
|
[158] |
MEINKE P, MEINKE S. Polygonalization of wheel treads caused by static and dynamic imbalances[J]. Journal of Sound and Vibration, 1999, 227(5): 979-986. doi: 10.1006/jsvi.1999.2590
|
[159] |
MEYWERK M. Polygonalization of railway wheels[J]. Archive of Applied Mechanics, 1999, 69: 105-120. doi: 10.1007/s004190050208
|
[160] |
BARKE D W, CHIU W K. A review of the effects of out-of-round wheels on track and vehicle components[J]. Journal of Rail and Rapid Transit, 2005, 219(3): 151-175. doi: 10.1243/095440905X8853
|
[161] |
DEKKER H. Vibrational resonances of nonrigid vehicles: Polygonization and ripple patterns[J]. Applied Mathematical Modeling, 2009, 33(3): 1349-1355. doi: 10.1016/j.apm.2008.01.025
|
[162] |
WU Xing-wen, RAKHEJA S, CAI Wu-bin, et al. A study of formation of high order wheel polygonalization[J]. Wear, 2019, 424/425: 1-14. doi: 10.1016/j.wear.2019.01.099
|
[163] |
JOHANSSON A, ANDERSSON C. Out-of-round railway wheels-a study of wheel polygonalization through simulation of three-dimensional wheel-rail interaction and wear[J]. Vehicle System Dynamics, 2005, 43(8): 539-559. doi: 10.1080/00423110500184649
|
[164] |
PAN Rui, ZHAO Xiu-juan, LIU Peng-tao, et al. Micro-mechanism of polygonization wear on railroad wheels[J]. Wear, 2017, 392/393: 213-220. doi: 10.1016/j.wear.2017.09.017
|
[165] |
宋春元, 沈文林, 李晓峰, 等. 高速动车组车轮多边形影响因素及抑制措施研究[J]. 中国铁路, 2017, 11: 33-40. doi: 10.3969/j.issn.1007-9971.2017.08.003
SONG Chun-yuan, SHEN Wen-lin, LI Xiao-feng, et al. On the influencing factors and inhibiting measures of wheel polygons of high-speed EMUs[J]. China Railway, 2017, 11: 33-40. (in Chinese) doi: 10.3969/j.issn.1007-9971.2017.08.003
|
[166] |
CHI Zhe-xiang, LIN Jing, CHEN Ruo-ran, et al. Data-driven approach to study the polygonization of high-speed railway train wheel-sets using field data of China's HSR train[J]. Measurement, 2020, 149: 107022-1-12. http://www.sciencedirect.com/science/article/pii/S0263224119308887
|
[167] |
翟婉明. 高速铁路轮轨冲击振动的特性及其控制原理[J]. 铁道学报, 1995, 17(3): 28-33. doi: 10.3321/j.issn:1001-8360.1995.03.005
ZHAI Wan-ming. Characteristics of wheel/rail impact vibrations in high-speed railway operation and their control principles[J]. Journal of the China Railway Society, 1995, 17(3): 28-33. (in Chinese) doi: 10.3321/j.issn:1001-8360.1995.03.005
|
[168] |
LIU Xiao-yuan, ZHAI Wan-ming. Analysis of vertical dynamic wheel/rail interaction caused by polygonal wheels on high-speed trains[J]. Wear, 2014, 314(1/2): 282-290.
|
[169] |
刘欢, 陶功权, 蔡晶, 等. 车轮多边形态下机车轮轨动态响应研究[J]. 振动与冲击, 2020, 39(16): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202016003.htm
LIU Huan, TAO Gong-quan, CAI Jing, et al. Influence of wheel polygon on locomotive wheel-rail dynamic response[J]. Journal of Vibration and Shock, 2020, 39(16): 16-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202016003.htm
|
[170] |
WU Xing-wen, CHI Mao-ru, WU Ping-bo. Influence of polygonal wear of railway wheels on the wheel set axle stress[J]. Vehicle System Dynamics, 2015, 53(11): 1535-1554. doi: 10.1080/00423114.2015.1063674
|
[171] |
WU Xing-wen, RAKHEJA S, QU Sheng, et al. Dynamic responses of a high-speed railway car due to wheel polygonalisation[J]. Vehicle System Dynamics, 2018, 56(12): 1817-1837. doi: 10.1080/00423114.2018.1439589
|
[172] |
张浩然. 车轮多边形对高速列车振动响应和构架疲劳寿命影响研究[D]. 北京: 北京交通大学, 2018.
ZHANG Hao-ran. Research on the effect of wheel polygon on vibration response and frame fatigue life of high-speed train[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
|
[173] |
安博洋, 赵鑫, 刘超, 等. 车轮踏面硌伤处的瞬态滚动接触应力分析[J]. 润滑与密封, 2014, 39(12): 69-74. doi: 10.3969/j.issn.0254-0150.2014.12.014
AN Bo-yang, ZHAO Xin, LIU Chao, et al. Analysis of transient rolling contact stressesat wheel indentation[J]. Lubrication Engineering, 2014, 39(12): 69-74. (in Chinese) doi: 10.3969/j.issn.0254-0150.2014.12.014
|
[174] |
寇峻瑜. 基于显式有限元法的高速车轮多边形动态响应分析[D]. 成都: 西南交通大学, 2018.
KOU Jun-yu. Analysis on dynamic responses of polygonized wheel of high-speed train using explicit FE method[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
|
[175] |
刘凯. 车轮多边形引起的轮轨动态响应有限元分析[D]. 成都: 西南交通大学, 2019.
LIU Kai. Finite element analysis of wheel-rail dynamic response caused by wheel polygonization[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
|
[176] |
吴磊, 钟硕乔, 金学松. 车轮多边形化对车辆运行安全性能的影响[J]. 交通运输工程学报, 2011, 11(3): 47-49. doi: 10.3969/j.issn.1671-1637.2011.03.009
WU Lei, ZHONG Shuo-qiao, JIN Xue-song. Influence of polygonal wheel on running safety of vehicle[J]. Journal of Traffic and Transportation Engineering, 2011, 11(3): 47-49. (in Chinese) doi: 10.3969/j.issn.1671-1637.2011.03.009
|
[177] |
李贵宇. 高阶车轮多边形对车辆动力学性能的影响[J]. 机械工程与自动化, 2016(5): 42-44. doi: 10.3969/j.issn.1672-6413.2016.05.015
LI Gui-yu. Influence of wheel polygonization on vehicles dynamics[J]. Mechanical Engineering and Automation, 2016(5): 42-44. (in Chinese) doi: 10.3969/j.issn.1672-6413.2016.05.015
|
[178] |
陈伟, 戴焕云, 罗仁. 高速列车车轮高阶多边形对车辆动力学性能的影响[J]. 铁道车辆, 2014, 52(12): 4-9. doi: 10.3969/j.issn.1002-7602.2014.12.002
CHEN Wei, DAI Huan-yun, LUO Ren. Effect of high order polygons of wheels for high speed trains on dynamics performance of vehicles[J]. Rolling Stock, 2014, 52(12): 4-9. (in Chinese) doi: 10.3969/j.issn.1002-7602.2014.12.002
|
[179] |
罗仁, 曾京, 邬平波, 等. 高速列车车轮不圆顺磨耗仿真及分析[J]. 铁道学报, 2010, 32(5): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201005007.htm
LUO Ren, ZENG Jing, WU Ping-bo, et al. Simulation and analysis of wheel out-of-roundness wear of high-speed train[J]. Journal of the China Railway Society, 2010, 32(5): 30-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201005007.htm
|
[180] |
王红兵, 李国芳, 王泽根, 等. 车轮多边形对车辆动力学性能影响分析[J]. 轨道标准设计, 2020, 64(6): 165-171. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202006032.htm
WANG Hong-bing, LI Guo-fang, WANG Ze-gen, et al. Analysis of influence of wheel polygon on vehicle dynamic performance[J]. Railway Standard Design, 2020, 64(6): 165-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202006032.htm
|
[181] |
ZHANG Jie, HAN Guang-xu, XIAO Xin-biao, et al. Influence of wheel polygonal wear on interior noise of high-speed trains[J]. Journal of Zhejiang University-SCIENCE A, 2014, 15(12): 1002-1018.
|
[182] |
李贵宇. 基于轨道振动的车轮多边形机理研究[D]. 成都: 西南交通大学, 2016.
LI Gui-yu. Study on the form reason of wheel polygonization based on track vibration[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
|
[183] |
SONG Ying, DU Yan-liang, ZHANG Xue-mei, et al. Evaluating the effect of wheel polygons on dynamic track performance in high-speed railway systems using co-simulation analysis[J]. Applied Sciences, 2019, 9(19): 4165-1-17. http://www.researchgate.net/publication/336272847_Evaluating_the_Effect_of_Wheel_Polygons_on_Dynamic_Track_Performance_in_High-Speed_Railway_Systems_Using_Co-Simulation_Analysis
|
[184] |
CHEN Mei, SUN Yu, GUO Yu, et al. Study on effect of wheel polygonal wear on high-speed vehicle-track-subgrade vertical interactions[J]. Wear, 2019, 426/427: 1820-1827. doi: 10.1016/j.wear.2019.01.020
|
[185] |
牛牧笛, 冯其波, 陈士谦. 列车轮对在线动态测量方法的评述[J]. 铁道机车车辆, 2006, 26(2): 32-35. doi: 10.3969/j.issn.1008-7842.2006.02.011
NIU Mu-di, FENG Qi-bo, CHEN Shi-qian. Research of dynamic measurement method to wheelset of trains online[J]. Railway Locomotive and Car, 2006, 26(2): 32-35. (in Chinese) doi: 10.3969/j.issn.1008-7842.2006.02.011
|
[186] |
LI Yi-fan, ZUO M J, LIN Jian-hui, et al. Fault detection method for railway wheel flat using an adaptive multiscale morphological filter[J]. Mechanical Systems and Signal Processing, 2017, 84: 642-658. doi: 10.1016/j.ymssp.2016.07.009
|
[187] |
YE Yun-guang, SHI Da-chuan, KRAUSE P, et al. A data-driven method for estimating wheel flat length[J]. Vehicle System Dynamics, 2020: 58(9): 1329-1347. doi: 10.1080/00423114.2019.1620956
|
[188] |
高瑞鹏, 尚春阳, 江航. 遗传算法结合小波神经网络的列车车轮扁疤故障检测方法[J]. 西安交通大学学报, 2013, 47(9): 88-91, 111. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201309015.htm
GAO Rui-peng, SHANG Chun-yang, JIANG Hang. A fault detection strategy for wheel flat scars with wavelet neural network and genetic algorithm[J]. Journal of Xi'an Jiaotong University, 2013, 47(9): 88-91, 111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201309015.htm
|
[189] |
史红梅, 赵蓉, 余祖俊, 等. 基于钢轨振动响应分析的车轮扁疤检测方法研究[J]. 振动与冲击, 2016, 35(10): 24-28, 54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201610004.htm
SHI Hong-mei, ZHAO Rong, YU Zu-jun, et al. Detection method for wheel flats based on rail vibration responses analysis[J]. Journal of Vibration and Shock, 2016, 35(10): 24-28, 54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201610004.htm
|
[190] |
GAO Run, HE Qi-xin, FENG Qi-bo, et al. Railway wheel flat detection system based on a parallelogram mechanism[J]. Sensors, 2019, 19(16): 3614-1-13. http://www.ncbi.nlm.nih.gov/pubmed/31434249
|
[191] |
CAO Wen-jun, ZHANG Shan-li, BERTOLA N J, et al. Time series data interpretation for 'wheel-flat' identification including uncertainties[J]. Structural Health Monitoring, 2019, DOI: 10.1177/1475921719887117.
|
[192] |
ZHOU Chen-yi, GAO Liang, XIAO Hong, et al. Railway wheel flat recognition and precise positioning method based on multisensor arrays[J]. Applied Sciences, 2020, DOI:org/10. 3390/app10041297.
|
[193] |
陈刚, 任光胜. 车辆轮对状态在线监测系统研究[J]. 城市轨道交通研究, 2012, 15(10): 79-81. doi: 10.3969/j.issn.1007-869X.2012.10.021
CHEN Gang, REN Guang-sheng. On-line detecting system of wheel-set state[J]. Urban Mass Transit, 2012, 15(10): 79-81. (in Chinese) doi: 10.3969/j.issn.1007-869X.2012.10.021
|
[194] |
田丽丽, 方宗德, 赵勇. 铁路货车车轮踏面伤损检测中剥离与擦伤定位方法[J]. 铁道学报, 2009, 31(5): 31-36. doi: 10.3969/j.issn.1001-8360.2009.05.005
TIAN Li-li, FANG Zong-de, ZHAO Yong. Locating methods of peeling and flat spots in detection of wheel tread damages of railway wagons[J]. Journal of the China Railway Society, 2009, 31(5): 31-36. (in Chinese) doi: 10.3969/j.issn.1001-8360.2009.05.005
|
[195] |
SALZBURGER H J, SCHUPPMANN M, WANG Li, et al. In-motion ultrasonic testing of the tread of high-speed railway wheels using the inspection system AUROPA Ⅲ[J]. Insight-Non- Destructive Testing and Condition Monitoring, 2009, 51(7): 370-372. doi: 10.1784/insi.2009.51.7.370
|
[196] |
ANASTASOPOULOS A, BOLLAS K, PAPASALOUROS D, et al. Acoustic emission inspection of rail wheels[C]//EWGAE. 29th European Conference on Acoustic Emission Testing. London: EWGAE, 2010: 215-228.
|
[197] |
MINORU O. Development of trackside rolling stock monitoring system[J]. Japanese Railway Engineering, 1999(142): 24-28. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GWJQ200005000.htm
|
[198] |
BELOTTI V, CRENNAF, MICHLINI R C, et al. Wheel-flat diagnostic tool via wavelet transform[J]. Mechanical Systems and Signal Processing, 2006, 20(8): 1953-1966. doi: 10.1016/j.ymssp.2005.12.012
|
[199] |
ZAKHAROV S M, ZHAROV I A. Criteria of bogie performance and wheel/rail wear prediction based on wayside measurement[J]. Wear, 2005, 258: 1135-1141. doi: 10.1016/j.wear.2004.03.025
|
[200] |
雷晓燕, 杨天, 刘庆杰. "车体-多边形化车轮-轨道"耦合系统动力分析及多边形车轮识别[J]. 噪声与振动控制, 2019, 39(2): 1-6. doi: 10.3969/j.issn.1006-1355.2019.02.001
LEI Xiao-yan, YANG Tian, LIU Qing-jie. Dynamic analysis and out-of-round wheel recognition of "body-out-of-round wheel-rail" coupling system[J]. Noise and Vibration Control, 2019, 39(2): 1-6. (in Chinese) doi: 10.3969/j.issn.1006-1355.2019.02.001
|
[201] |
WAUBKE H, THUMMEL T, MAYR G, et al. Track measuring point detects out-of-round wheels for condition-oriented maintenance of rail vehicles[J]. Zev Und Det Glasers Annalen, 2000, 124(9): 496-502. http://www.researchgate.net/publication/297936652_Track_measuring_point_detects_out-of-round_wheels_for_conditionoriented_maintenance_of_rail_vehicles
|
[202] |
丁建明, 林建辉, 易彩. 车轮不圆顺动态检测的时频特证圈内定位比较法[J]. 振动与冲击, 2013, 32(19): 39-43. doi: 10.3969/j.issn.1000-3835.2013.19.008
DING Jian-ming, LIN Jian-hui, YI Cai. Dynamic detection of out-of-round wheels using a comparison of time-frequency feature locatings[J]. Journal of Vibration and Shock, 2013, 32(19): 39-43. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.19.008
|
[203] |
李奕璠, 林建辉, 刘建新. 车轮踏面擦伤识别方法[J]. 振动与冲击, 2013, 32(22): 21-27. doi: 10.3969/j.issn.1000-3835.2013.22.004
LI Yi-fan, LIN Jian-hui, LIU Jian-xin. Identification method of wheel tread flat[J]. Journal of Vibration and Shock, 2013, 32(22): 21-27. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.22.004
|
[204] |
WANG Zhi-wei, ALLEN P, MEI Gui-ming, et al. Influence of wheel-polygonal wear on the dynamic forces within the axle-box bearing of a high-speed train[J]. Vehicle System Dynamics, 2020, 28(9): 1385-1406. doi: 10.1080/00423114.2019.1626013?scroll=top&needAccess=true&cookieSet=1
|
[205] |
王瑞乾, 李晔, 储丽霞, 等. 轨道交通车辆车轮显著多边形提取方法[J]. 噪声与振动控制, 2017, 37(1): 82-85, 97. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201701018.htm
WANG Rui-qian, LI Ye, CHU Li-xia, et al. Method for extracting significant polygons of railway wheels[J]. Noise and Vibration Control, 2017, 37(1): 82-85, 97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201701018.htm
|
[206] |
方春青. 盘形制动对踏面剥离原因分析及预防措施[J]. 铁道车辆, 2003, 41(7): 44. doi: 10.3969/j.issn.1002-7602.2003.07.018
FANG Qing-chun. Cause analysis of disc brake on tread spalling and preventive measures[J]. Rolling Stock, 2003, 41(7): 44. (in Chinese) doi: 10.3969/j.issn.1002-7602.2003.07.018
|
[207] |
张志波. 研磨子对车轮不圆的修形作用[J]. 中国铁路, 2018(1): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201801007.htm
ZHANG Zhi-bo. Influence of grinder application to profile adjustment of wheel polygon[J]. China Railway, 2018(1): 36-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201801007.htm
|
[208] |
ZHAO X N, CHEN G X, LV J Z, et al. Study on the mechanism for the wheel polygonal wear of high-speed trains in terms of the frictional self-excited vibration theory[J]. Wear, 2019, 426: 1820-1827. http://www.sciencedirect.com/science/article/pii/S0043164819300341
|
[209] |
马卫华, 罗世辉, 宋荣荣. 地铁车辆车轮多边形化形成原因分析[J]. 机械工程学报, 2012, 48(24): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201224019.htm
MA Wei-hua, LUO Shi-hui, SONG Rong-rong. Analyses of the form reason of wheel polygonization of subway vehicle[J]. Journal of Mechanical Engineering, 2012, 48(24): 106-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201224019.htm
|