Volume 21 Issue 2
Aug.  2021
Turn off MathJax
Article Contents
MA Yong-jie, MA Yun-ting, CHENG Shi-sheng, MA Yi-de. Road vehicle detection method based on improved YOLO v3 model and deep-SORT algorithm[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 222-231. doi: 10.19818/j.cnki.1671-1637.2021.02.019
Citation: MA Yong-jie, MA Yun-ting, CHENG Shi-sheng, MA Yi-de. Road vehicle detection method based on improved YOLO v3 model and deep-SORT algorithm[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 222-231. doi: 10.19818/j.cnki.1671-1637.2021.02.019

Road vehicle detection method based on improved YOLO v3 model and deep-SORT algorithm

doi: 10.19818/j.cnki.1671-1637.2021.02.019
Funds:

National Natural Science Foundation of China 62066041

More Information
  • Author Bio:

    MA Yong-jie(1967-), male, professor, PhD, myjmyj@nwnu.edu.cn

  • Received Date: 2020-11-23
  • Publish Date: 2021-04-01
  • A vehicle detection method based on the improved YOLO v3 model and deep-SORT algorithm was proposed to address the problems of serious occlusion and high misdetection rate of small target vehicles in the real-time detection of road vehicles. To improve the detection ability of the model for road vehicle, the K-means++ clustering algorithm was used to cluster the target candidate boxes, the appropriate number of anchor boxes was selected, and a feature extraction layer to the shallow layer of the network was added to extract more refined vehicle features. The robustness of the network for different distant targets was enhanced by retaining the original YOLO v3 model's output layer but adding another layer to it. After the 52 pixel×52 pixel output feature map was upsampled, a 104 pixel×104 pixel feature map was obtained, which was spliced with a shallow layer feature map of the same size to achieve the vehicle target detection. To reduce the influence of target occlusion on the detection and improve the attention to the association information between the upper and lower frames of the video, the YOLO v3 model was improved and combined with the deep-SORT algorithm to compensate for their shortcomings. Experimental results show that the improved YOLO v3 model can enhance the vehicle detection performance. Compared with the model adding feature extraction layer in the shallow layer of the network, the average accuracy improves by 1.4%, and compared with the model adding one output layer, the average accuracy improves by 0.8%. It indicates that the improved YOLO v3 model has a stronger feature expression ability and enhances the network's ability to detect small targets. After the deep-SORT algorithm is introduced into the improved YOLO v3 model, the precision and recall are 90.16% and 91.34%, respectively. Compared with the improved YOLO v3 model, the precision and recall increase by 1.48% and 4.20%, respectively. At the same time, the detection speed is maintained, and the detection of different-sized targets is highly robust. 4 tabs, 5 figs, 32 refs.

     

  • loading
  • [1]
    KACHACH R, CAÑAS J M. Hybrid three-dimensional and support vector machine approach for automatic vehicle tracking and classification using a single camera[J]. Journal of Electronic Imaging, 2016, 25(3): 033021. doi: 10.1117/1.JEI.25.3.033021
    [2]
    DANELLJAN M, HAGER G, KHAN F, et al. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1561-1575. doi: 10.1109/TPAMI.2016.2609928
    [3]
    WEI Yun, TIAN Qing, GUO Jian-hua, et al. Multi-vehicle detection algorithm through combining Harr and HOG features[J]. Mathematics and Computers in Simulation, 2019, 155: 130-145. doi: 10.1016/j.matcom.2017.12.011
    [4]
    杨娟, 曹浩宇, 汪荣贵, 等. 基于语义DCNN特征融合的细粒度车型识别模型[J]. 计算机辅助设计与图形学学报, 2019, 31(1): 141-157. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201901018.htm

    YANG Juan, CAO Hao-yu, WANG Rong-gui, et al. Fine-grained car recognition model based on semantic DCNN features fusion[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(1): 141-157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201901018.htm
    [5]
    余烨, 傅云翔, 杨昌东, 等. 基于FR-ResNet的车辆型号精细识别研究[J/OL]. 自动化学报, (2019-04-03)[2020-12-22]. DOI: 10.16383/j.aas.c180539.

    YU Ye, FU Yun-xiang, YANG Chang-dong, et al. Fine-grained car model recognition based on FR-ResNet[J/OL]. Acta Automatica Sinica, (2019-04-03)[2020-12-22]. DOI: 10.16383/j.aas.c180539.(in Chinese)
    [6]
    凌艳, 陈莹. 多尺度上下文信息增强的显著目标检测全卷积网络[J]. 计算机辅助设计与图形学学报, 2019, 31(11): 2007- 2016. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201911015.htm

    LING Yan, CHEN Ying. Salient object detection with multiscale context enhanced fully convolution network[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(11): 2007-2016. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201911015.htm
    [7]
    鞠默然, 罗海波, 王仲博, 等. 改进的YOLO v3算法及其在小目标检测中的应用[J]. 光学学报, 2019, 39(7): 253-260. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201907028.htm

    JU Mo-ran, LUO Hai-bo, WANG Zhong-bo, et al. Improved YOLO v3 algorithm and its application in small target detection[J]. Acta Optica Sinica, 2019, 39(7): 253-260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201907028.htm
    [8]
    LI Su-hao, LIN Jin-zhao, LI Guo-quan, et al. Vehicle type detection based on deep learning in traffic scene[J]. Procedia Computer Science, 2018, 131: 564-572. doi: 10.1016/j.procs.2018.04.281
    [9]
    曹磊, 王强, 史润佳, 等. 基于改进RPN的Faster-RCNN网络SAR图像车辆目标检测方法[J]. 东南大学学报(自然科学版), 2021, 51(1): 87-91.

    CAO Lei, WANG Qiang, SHI Run-jia, et al. Method for vehicle target detection on SAR image based on improved RPN in Faster-RCNN[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(1): 87-91. (in Chinese)
    [10]
    李琳辉, 伦智梅, 连静, 等. 基于卷积神经网络的道路车辆检测方法[J]. 吉林大学学报(工学版), 2017, 47(2): 384-391. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201702006.htm

    LI Lin-hui, LUN Zhi-mei, LIAN Jing, et al. Convolution neural network-based vehicle detection method[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(2): 384-391. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201702006.htm
    [11]
    LEE W J, DONG S P, DONG W K, et al. A vehicle detection using selective multi-stage features in convolutional neural networks[C]//IEEE. 17th International Conference on Control, Automation and Systems. New York: IEEE, 2017: 1-3.
    [12]
    ALIREZA A, LUIS G, CRISTIANO P, et al. Multimodal vehicle detection: fusing 3D-LIDAR and color camera data[J]. Pattern Recognition Letters, 2018, 115: 20-29. doi: 10.1016/j.patrec.2017.09.038
    [13]
    DAI Xue-rui. HybridNet: a fast vehicle detection system for autonomous driving[J]. Signal Processing: Image Communication, 2019, 70: 79-88. doi: 10.1016/j.image.2018.09.002
    [14]
    LUO Ji-qing, FANG Hu-sheng, SHAO Fa-ming, et al. Multi-scale traffic vehicle detection based on faster R-CNN with NAS optimization and feature enrichment[J]. Defence Technology, 2021, DOI: 10.1016/j.dt.2020.10.006.
    [15]
    邹伟, 殷国栋, 刘昊吉, 等. 基于多模态特征融合的自主驾驶车辆低辨识目标检测方法[J/OL]. 中国机械工程, (2020-06-24)[2020-12-22]. https://kns.cnki.net/kcms/detail/42.1294.TH.20200624.1308.008.html.

    ZOU Wei, YIN Guo-dong, LIU Hao-ji, et al. Low-observable targets detection method for autonomous vehicles based on multi-modal feature fusion[J/OL]. China Mechanical Engineering, (2020-06-24)[2020-12-22]. https://kns.cnki.net/kcms/detail/42.1294.TH.20200624.1308.008.html. (in Chinese)
    [16]
    汪昱东, 郭继昌, 王天保. 一种改进的雾天图像行人和车辆检测算法[J]. 西安电子科技大学学报, 2020, 47(4): 70-77. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD202004013.htm

    WANG Yu-dong, GUO Ji-chang, WANG Tian-bao. Algorithm for foggy-image pedestrian and vehicle detection[J]. Journal of Xidian University, 2020, 47(4): 70-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD202004013.htm
    [17]
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE. 27th IEEE Conference on Computer Vision and Pattern Recognition, New York: IEEE, 2014: 580-587.
    [18]
    GIRSHICK R. Fast R-CNN[C]//IEEE. 15th IEEE International Conference on Computer Vision, New York: IEEE, 2015: 1440-1448.
    [19]
    REN Shao-qing, HE Kai-ming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [20]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition, New York: IEEE, 2016: 779-788.
    [21]
    REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 6517-6525.
    [22]
    REDMON J, FARHADI A. YOLOv3: an incremental improvement[R]. Ithaca: Cornell University, 2018.
    [23]
    LIU WEI, ANGUELOV D, ERHAN D, et al. SSD: single shotmultibox detector[C]//Springer. 14th European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [24]
    周苏, 支雪磊, 林飞滨, 等. 基于车载视频图像的车辆检测与跟踪算法[J]. 同济大学学报(自然科学版), 2019, 47(S1): 191-198. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ2019S1036.htm

    ZHOU Su, ZHI Xue-lei, LIN Fei-bin, et al. Research on vehicle detection and tracking algorithm based on onboard video images[J]. Journal of Tongji University (Natural Science Edition), 2019, 47(S1): 191-198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ2019S1036.htm
    [25]
    金立生, 郭柏苍, 王芳荣, 等. 基于改进YOLOv3的车辆前方动态多目标检测算法[J/OL]. 吉林大学学报(工学版), (2020-12-17)[2020-12-22]. https://doi.org/10.13229/j.cnki.jdxbgxb20200588.

    JIN Li-sheng, GUO Bai-cang, WANG Fang-rong. Dynamic multiple object algorithm for vehicle forward based on improved YOLOv3[J/OL]. Journal of Jilin University (Engineering and Technology Edition), (2020-12-17)[2020-12-22]. https://doi.org/10.13229/j.cnki.jdxbgxb20200588. (in Chinese)
    [26]
    李珣, 刘瑶, 李鹏飞, 等. 基于Darknet框架下YOLO v2算法的车辆多目标检测方法[J]. 交通运输工程学报, 2018, 18(6): 142-158. doi: 10.3969/j.issn.1671-1637.2018.06.015

    LI Xun, LIU Yao, LI Peng-fei, et al. Vehicle multi-target detection method based on YOLO v2 algorithm under darknet framework[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 142-158. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.06.015
    [27]
    黎洲, 黄妙华. 基于YOLO_v2模型的车辆实时检测[J]. 中国机械工程, 2018, 29(15): 1869-1874. doi: 10.3969/j.issn.1004-132X.2018.15.015

    LI Zhou, HUANG Miao-hua. Vehicle detections based on YOLO_v2 in real-time[J]. China Mechanical Engineering, 2018, 29(15): 1869-1874. (in Chinese) doi: 10.3969/j.issn.1004-132X.2018.15.015
    [28]
    刘军, 后士浩, 张凯, 等. 基于增强Tiny YOLOV3算法的车辆实时检测与跟踪[J]. 农业工程学报, 2019, 35(8): 118-125. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201908014.htm

    LIU Jun, HOU Shi-hao, ZHANG Kai, et al. Real-time vehicle detection and tracking based on enhanced Tiny YOLOV3 algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(8): 118-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201908014.htm
    [29]
    SRI J S, ESTHER R P. Little YOLO-SPP: a delicate real-time vehicle detection algorithm[J]. Optik, 2021, 225: 165818. doi: 10.1016/j.ijleo.2020.165818
    [30]
    柳长源, 王琪, 毕晓君. 多目标小尺度车辆目标检测方法的研究[J/OL]. 控制与决策, (2020-09-03)[2020-12-22]. https://doi.org/10.13195/j.kzyjc.2020.0635.

    LIU Chang-yuan, WANG Qi, BI Xiao-juan. Research on multi-target and small-scale vehicle target detection method[J/OL]. Control and Decision, (2020-09-03)[2020-12-22]. https://doi.org/10.13195/j.kzyjc.2020.0635. (in Chinese)
    [31]
    LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Springer. 13th European Conference on Computer Vision, 2014. Berlin: Springer, 2014: 740-755.
    [32]
    王宇宁, 庞智恒, 袁德明. 基于YOLO算法的车辆实时检测[J]. 武汉理工大学学报, 2016, 38(10): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201610009.htm

    WANG Yu-ning, PANG Zhi-heng, YUAN De-ming. Vehicle detection based on YOLO in real time[J]. Journal of Wuhan University of Technology, 2016, 38(10): 42-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY201610009.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1237) PDF downloads(218) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return