Citation: | WANG Zheng-hong, YANG Chuan. Improved SSD model in extraction application of expressway toll station locations from GaoFen 2 remote sensing image[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 278-286. doi: 10.19818/j.cnki.1671-1637.2021.02.024 |
[1] |
薛晨荣, 尹东, 李桂芹, 等. 道路收费站的识别研究[J]. 计算机仿真, 2009, 26(2): 225-228. doi: 10.3969/j.issn.1006-9348.2009.02.057
XUE Chen-rong, YIN Dong, LI Gui-qin, et al. A study of toll station recognition[J]. Computer Simulation, 2009, 26(2): 225-228. (in Chinese) doi: 10.3969/j.issn.1006-9348.2009.02.057
|
[2] |
李剑, 梅乐翔, 高薪, 等. 基于卫星遥感图像的收费站位置自动识别与校核[J]. 中国交通信息化, 2019(7): 109-110, 116. https://www.cnki.com.cn/Article/CJFDTOTAL-JTXC201907012.htm
LI Jian, MEI Le-xiang, GAO Xin, et al. Automatic recognition and verification of toll station location based on satellite remote sensing images[J]. China ITS Journal, 2019(7): 109-110, 116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTXC201907012.htm
|
[3] |
刘晟, 王卫星, 王珊珊, 等. 模糊航空图像中的道路自动检测方法[J]. 交通运输工程学报, 2015, 15(4): 110-117. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201504016.htm
LIU Sheng, WANG Wei-xing, WANG Shan-shan, et al. Automatic detection method of roads from fuzzy aerial images[J]. Journal of Traffic and Transportation Engineering, 2015, 15(4): 110-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201504016.htm
|
[4] |
WANG Min, ZHANG Si-qi. Road extraction from high-spatial- resolution remotely sensed imagery by combining multi-profile analysis and extended Snakes model[J]. International Journal of Remote Sensing, 2011, 32(21): 6349-6365. doi: 10.1080/01431161.2010.508801
|
[5] |
HEIPKE C, MAYER H, WIEDEMANN C, et al. Evaluation of automatic road extraction[J]. International Archives of Photogrammetry and Remote Sensing, 1997, 32: 151-160. http://ci.nii.ac.jp/naid/10019600414
|
[6] |
李珣, 刘瑶, 李鹏飞, 等. 基于Darknet框架下YOLO v2算法的车辆多目标检测方法[J]. 交通运输工程学报, 2018, 18(6): 142-158. doi: 10.3969/j.issn.1671-1637.2018.06.015
LI Xun, LIU Yao, LI Peng-fei, et al. Vehicle multi-target detection method based on YOLO v2 algorithm under darknet framework[J]. Journal of Traffic and Transportation Engineering, 2018, 18(6): 142-158. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.06.015
|
[7] |
ZHOU J, GAO D S, ZHANG D. Moving vehicle detection for automatic traffic monitoring[J]. IEEE Transactions on Vehicular Technology, 2007, 56(1): 51-59. doi: 10.1109/TVT.2006.883735
|
[8] |
LEITLOFF J, HINZ S, STILLA U. Vehicle detection in very high resolution satellite images of city areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7): 2795-2806. doi: 10.1109/TGRS.2010.2043109
|
[9] |
KARANTZALOS K, PARAGIOS N. Recognition-driven 2D competing priors towards automatic and accurate building detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 47(1): 133-144. http://search.ebscohost.com/login.aspx?direct=true&db=buh&AN=37382800&site=ehost-live
|
[10] |
OK A O, SENARAS C, YUKSEL B. Automated detection of arbitrarily shaped buildings in complex environments from monocular VHR optical satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 51(3): 1701-1717. http://ieeexplore.ieee.org/document/6276251
|
[11] |
AHMADI S, ZOEJ M J V, EBADI H, et al. Automatic urban building boundary extraction from high resolution aerial images using an innovative model of active contours[J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12(3): 150-157. doi: 10.1016/j.jag.2010.02.001
|
[12] |
HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. doi: 10.1162/neco.2006.18.7.1527
|
[13] |
BASSANI M, MUSSONE L. Experimental analysis of operational data for roundabouts through advanced image processing[J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(4): 482-497. doi: 10.1016/j.jtte.2019.01.005
|
[14] |
DWIVEDI N, SINGH D K, KUSHWAHA D S. Weapon classification using deep convolutional neural network[C]//IEEE. 2019 IEEE Conference on Information and Communication Technology. New York: IEEE, 2019: 9066227.
|
[15] |
沙爱民, 童峥, 高杰. 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报, 2018, 31(1): 1-10. doi: 10.3969/j.issn.1001-7372.2018.01.001
SHA Ai-min, TONG Zheng, GAO Jie. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31(1): 1-10. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.01.001
|
[16] |
刘占文, 赵祥模, 李强, 等. 基于图模型与卷积神经网络的交通标志识别方法[J]. 交通运输工程学报, 2016, 16(5): 122-131. doi: 10.3969/j.issn.1671-1637.2016.05.014
LIU Zhan-wen, ZHAO Xiang-mo, LI Qiang, et al. Traffic sign recognition method based on graphical model and convolutional neural network[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 122-131. (in Chinese) doi: 10.3969/j.issn.1671-1637.2016.05.014
|
[17] |
XU Yong-yang, XIE Zhong, FENG Ya-xing, et al. Road extraction from high-resolution remote sensing imagery using deep learning[J]. Remote Sensing, 2018, 10(9): 1461. doi: 10.3390/rs10091461
|
[18] |
GONG Li-xia, WANG Chao, WU Fan, et al. Earthquake-induced building damage detection with post-event sub-meter VHR TerraSAR-X staring spotlight imagery[J]. Remote Sensing, 2016, 8(11): 887. doi: 10.3390/rs8110887
|
[19] |
YANG Chuan, WANG Zheng- hong. An ensemble Wasserstein generative adversarial network method for road extraction from high resolution remote sensing images in rural areas[J]. IEEE Access, 2020, 8: 174317-174324. doi: 10.1109/ACCESS.2020.3026084
|
[20] |
CHEN Zheng-chao, LU Kai-xuan, GAO Lian-ru, et al. Automatic detection of track and fields in China from high-resolution satellite images using multi-scale-fused single shot multibox detector[J]. Remote Sensing, 2019, 11(11): 1377. doi: 10.3390/rs11111377
|
[21] |
JI Shun-ping, YU Da-wen, SHEN Chao-yong, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020, 17(6): 1337-1352. doi: 10.1007/s10346-020-01353-2
|
[22] |
GONG Peng, LI Xue-cao, ZHANG Wei. 40-year (1978- 2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing[J]. Science Bulletin, 2019, 64(11): 756-763. doi: 10.1016/j.scib.2019.04.024
|
[23] |
TONG Xin-yi, LU Qi-kai, XIA Gui-song. Large-scale land cover classification in GaoFen-2 satellite imagery[C]//IEEE. 38th Annual IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE, 2018: 3599-3602.
|
[24] |
WU Qiong, ZHONG Ruo-fei, ZHAO Wen-ji, et al. Land-cover classification using GF-2 images and airborne lidar data based on Random Forest[J]. International Journal of Remote Sensing, 2019, 40(5/6): 2410-2426. doi: 10.1080/01431161.2018.1483090
|
[25] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 779-788.
|
[26] |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 6517-6525.
|
[27] |
REDMON J, FARHADI A. YOLO v3: an incremental improvement[R]. Ithaca: Cornell University, 2018.
|
[28] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Springer. 14th European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
|
[29] |
HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
|
[30] |
GIRSHICK R. Fast R-CNN[C]//IEEE. 15th IEEE International Conference on Computer Vision. New York: IEEE, 2015: 1440-1448.
|
[31] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE. 27th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2014, 580-587.
|
[32] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 936-944.
|
[33] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//ICLR. 3rd International Conference on Learning Representations. New Orleans: ICLR, 2015: 1-14.
|
[34] |
王俊强, 李建胜, 周学文, 等. 改进的SSD算法及其对遥感影像小目标检测性能的分析[J]. 光学学报, 2019, 39(6): 0628005. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201906044.htm
WANG Jun-qiang, LI Jian-sheng, ZHOU Xue-wen, et al. Improved SSD algorithm and its performance analysis of small target detection in remote sensing images[J]. Acta Optica Sinica, 2019, 39(6): 0628005. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201906044.htm
|
[35] |
ZHAI She-ping, SHANG Ding-rong, WANG Shu-huan, et al. DF-SSD: an improved SSD object detection algorithm based on DenseNet and feature fusion[J]. IEEE Access, 2020, 8: 24344-24357. doi: 10.1109/ACCESS.2020.2971026
|