Volume 21 Issue 3
Aug.  2021
Turn off MathJax
Article Contents
MA Xiao-chuan, LIU Lin-ya, FENG Qing-song, XU Jing-mang, XU Jin-hui, WANG Ping. Prediction model of rail crack initiation using bond-based peridynamics theory[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 228-237. doi: 10.19818/j.cnki.1671-1637.2021.03.015
Citation: MA Xiao-chuan, LIU Lin-ya, FENG Qing-song, XU Jing-mang, XU Jin-hui, WANG Ping. Prediction model of rail crack initiation using bond-based peridynamics theory[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 228-237. doi: 10.19818/j.cnki.1671-1637.2021.03.015

Prediction model of rail crack initiation using bond-based peridynamics theory

doi: 10.19818/j.cnki.1671-1637.2021.03.015
Funds:

National Key Research and Development Program of China 2021YFE0105600

National Natural Science Foundation of China U1734207

National Natural Science Foundation of China 51978263

Jiangxi Natural Science Foundation of Jiangxi Province 20192BAB216035

Science and Technology Research Project of Jiangxi Education Department GJJ200640

More Information
  • Author Bio:

    MA Xiao-chuan(1990-), male, assistant professor, PhD, rw.ma@ecjtu.edu.cn

  • Received Date: 2020-12-18
    Available Online: 2021-08-27
  • Publish Date: 2021-08-27
  • The peridynamic method is used to predict the crack initiation of rails to overcome the difficulty of classical continuum mechanics in solving discontinuous problems and to prevent the failure of mathematical framework in discontinuities. The deformation analysis model of the rail was established by considering the support of the sleeper. The reliability of parameter values and the convergence of the model were analyzed, and the displacements of the rail under wheel-rolling contact loads were calculated. Based on the peridynamic damage theory, taking the bond stretch rate as index, the effects of wheel full sliding, adhesive-sliding, and frictionless state on the crack initiation of rails were investigated. Calculation results show that the rail deformations calculated using the peridynamic model and the classical continuum mechanics model are consistent. Moreover, the maximum calculation errors are within 8%, verifying the preciseness of the peridynamic model. When the fatigue crack is initiated on the rail head, the crack initiation position is approximately 2 mm below the surface of the rail instead of on the rail surface. This result is consistent with field observation, demonstrating the applicability of the peridynamic method in simulating the fatigue crack initiation of railway rails. When the wheel load is at the midspan of rails and the wheel transits from full sliding to frictionless state, the starting location of fatigue crack initiation of the rails is transferred from the rail head to the bottom and from the front end to the center of contact patch. The crack type changes from local rolling contact fatigue to integral structural fatigue, and the maximum bond stretch decreases from 1.1×10-3 to 8.1×10-4. Therefore, an increase of the tangential contact stress decreases the crack initiation life of the rail. When the wheel load is above the sleeper, the crack initiation position of the rail is always at the rail head. 11 figs, 30 refs.

     

  • loading
  • [1]
    RINGSBERG J W, LOO-MORREY M, JOSEFSON B L, et al. Prediction of fatigue crack initiation for rolling contact fatigue[J]. International Journal of Fatigue, 2000, 22(3): 205-215. doi: 10.1016/S0142-1123(99)00125-5
    [2]
    樊文刚, 刘月明, 李建勇. 高速铁路钢轨打磨技术的发展现状与展望[J]. 机械工程学报, 2018, 54(22): 184-193. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201822022.htm

    FAN wen-gang, LIU Yue-ming, LI Jian-yong. Development status and prospect of rail grinding technology for high speed railway[J]. Journal of Mechanical Engineering, 2018, 54(22): 184-193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201822022.htm
    [3]
    FRANKLIN F J, WIDIYARTA I, KAPOOR A. Computer simulation of wear and rolling contact fatigue[J]. Wear, 2001, 251: 949-955. doi: 10.1016/S0043-1648(01)00732-3
    [4]
    KAPOOR A, FRANKLIN F J. Tribological layers and the wear of ductile materials[J]. Wear, 2000, 245(1/2): 204-215. http://www.sciencedirect.com/science/article/pii/S0043164800004804
    [5]
    卢耀辉, 向鹏霖, 曾京, 等. 高速列车转向架构架动应力计算与疲劳全寿命预测[J]. 交通运输工程学报, 2017, 17(1): 62-70. doi: 10.3969/j.issn.1671-1637.2017.01.008

    LU Yao-hui, XIANG Peng-lin, ZENG Jing, et al. Dynamic stress calculation and fatigue whole life prediction of bogie frame for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 62-70. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.01.008
    [6]
    FRANKIN F J, CHUNG T, KAPOOR A. Ratcheting and fatigue-led wear in rail-wheel contact[J]. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26(10): 949-955. doi: 10.1046/j.1460-2695.2003.00703.x
    [7]
    PUN L C, KAN Qian-hua, MUTTON P J, et al. An efficient computational approach to evaluate the ratcheting performance of rail steels under cyclic rolling contact in service[J]. International Journal of Mechanical Sciences, 2015, 101/102: 214-226. doi: 10.1016/j.ijmecsci.2015.08.008
    [8]
    LIU Yong-ming, MAHADEVAN S. Multiaxial high-cycle fatigue criterion and life prediction for metals[J]. International Journal of Fatigue, 2005, 27(7): 790-800. doi: 10.1016/j.ijfatigue.2005.01.003
    [9]
    JIANG Yan-yao, XU Bi-qiang, SEHITOGLU H. Three- dimensional elastic-plastic stress analysis of rolling contact[J]. Journal of Tribology, 2002, 124: 699-708. doi: 10.1115/1.1491978
    [10]
    王建西, 许玉德, 王志臣. 影响钢轨疲劳裂纹萌生寿命的主要因素分析[J]. 同济大学学报(自然科学版), 2009, 37(7): 914-918. doi: 10.3969/j.issn.0253-374x.2009.07.013

    WANG Jian-xi, XU Yu-de, WANG Zhi-chen. Analysis of major influencing factors of rolling contact fatigue crack initiation life of rails[J]. Journal of Tongji University (Natural Science), 2009, 37(7): 914-918. (in Chinese) doi: 10.3969/j.issn.0253-374x.2009.07.013
    [11]
    王建西, 许玉德, 练松良, 等. 随机轮轨力作用下钢轨滚动接触疲劳裂纹萌生寿命预测仿真[J]. 铁道学报, 2010, 32(3): 66-70. doi: 10.3969/j.issn.1001-8360.2010.03.012

    WANG Jian-xi, XU Yu-de, LIAN Song-liang, et al. Simulation of predicting RCF crack initiation life of rails under random wheel-rail forces[J]. Journal of the China Railway Society, 2010, 32(3): 66-70. (in Chinese) doi: 10.3969/j.issn.1001-8360.2010.03.012
    [12]
    王少锋, 刘林芽, 刘海涛, 等. 基于损伤累积和权重参数的重载铁路曲线内轨裂纹萌生特征及剥离掉块分析[J]. 中国铁道科学, 2017, 38(1): 29-36. doi: 10.3969/j.issn.1001-4632.2017.01.05

    WANG Shao-feng, LIU Lin-ya, LIU Hai-tao, et al. Crack initiation and spalling analysis of inner rail on heavy haul railway curve based on damage accumulation and weight parameter[J]. China Railway Science, 2017, 38(1): 29-36. (in Chinese) doi: 10.3969/j.issn.1001-4632.2017.01.05
    [13]
    周宇, 木东升, 邝迪峰, 等. 城市轨道交通钢轨磨耗和裂纹萌生分析与选型建议[J]. 交通运输工程学报, 2018, 18(4): 82-89. doi: 10.3969/j.issn.1671-1637.2018.04.009

    ZHOU Yu, MU Dong-sheng, KUANG Di-feng, et al. Analysis on rail wear and crack initiation and recommendation on rail selection in urban rail transit[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 82-89. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.04.009
    [14]
    EI-SAYED H M, LOTFY M, EI-DIN ZOHNY H N, et al. Prediction of fatigue crack initiation life in railheads using finite element analysis[J]. Ain Shams Engineering Journal, 2018, 9(4): 2329-2342. doi: 10.1016/j.asej.2017.06.003
    [15]
    邓铁松, 李伟, 温泽峰, 等. 钢轨滚动接触疲劳裂纹萌生寿命预测[J]. 润滑与密封, 2013, 38(8): 46-51. doi: 10.3969/j.issn.0254-0150.2013.08.010

    DENG Tie-song, LI Wei, WEN Ze-feng, et al. Prediction on rolling contact fatigue crack initiation life of rails[J]. Lubrication Engineering, 2013, 38(8): 46-51. (in Chinese) doi: 10.3969/j.issn.0254-0150.2013.08.010
    [16]
    KLEINA P A, FOULKA J W, CHEN E P, et al. Physics-based modeling of brittle fracture: cohesive formulations and the application of meshfree methods[J]. Theoretical and Applied Fracture Mechanics, 2001, 37: 99-166. doi: 10.1016/S0167-8442(01)00091-X
    [17]
    SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(2): 175-209. http://isn-csm.mit.edu/literature/2000-jmps-Silling.pdf
    [18]
    刘硕, 方国东, 付茂青, 等. 近场动力学与有限元方法耦合求解复合材料损伤问题[J]. 中国科学: 技术科学, 2019, 49(10): 1215-1222. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201910011.htm

    LIU Shuo, FANG Guo-dong, FU Mao-qing, et al. Study of composite material damage problem using coupled peridynamics and finite element method[J]. Scientia Sinica Technologica, 2019, 49(10): 1215-1222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201910011.htm
    [19]
    BABER F, GUVEN I. Solder joint fatigue life prediction using peridynamic approach[J]. Microelectronics Reliability, 2017, 79: 20-31. doi: 10.1016/j.microrel.2017.10.004
    [20]
    李潘. 近场动力学损伤断裂模拟方法及其在PBX炸药裂纹扩展中的应用[D]. 绵阳: 中国工程物理研究院, 2018.

    LI Pan. Peridynamic damage simulation method and its application on crack propagation analysis of PBX energetic materials[D]. Mianyang: China Academy of Engineering Physics, 2018. (in Chinese)
    [21]
    李天一, 章青, 夏晓丹, 等. 考虑混凝土材料非均质特性的近场动力学模型[J]. 应用数学和力学, 2018, 39(8): 913-924. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201808005.htm

    LI Tian-yi, ZHANG Qing, XIA Xiao-dan, et al. A peridynamic model for heterogeneous concrete materials[J]. Applied Mathematics and Mechanics, 2018, 39(8): 913-924. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYSX201808005.htm
    [22]
    SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics[J]. Computers and Structures, 2005, 83(17/18): 1526-1535. http://www.sciencedirect.com/science/article/pii/S0045794905000805
    [23]
    GERSTLE W H, SAU N, SAKHAVAND N. On peridynamic computational simulation of concrete structures[J]. International Concrete Abstracts Portal, 2009, 265: 245-264. http://www.researchgate.net/publication/279556113_On_peridynamic_computational_simulation_of_concrete_structures
    [24]
    赵树立, 余音, 徐武. 疲劳多裂纹扩展的常规态型近场动力学分析[J]. 哈尔滨工业大学学报, 2019, 51(4): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201904004.htm

    ZHAO Shu-li, YU Yin, XU Wu. Ordinary state-based peridynamics method for fatigue multi-crack propagation[J]. Journal of Harbin Institute of Technology, 2019, 51(4): 19-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201904004.htm
    [25]
    MACEK R W, SILLING S A. Peridynamics via finite element analysis[J]. Finite Elements in Analysis and Design, 2007, 43(15): 1169-1178. doi: 10.1016/j.finel.2007.08.012
    [26]
    KILIC B, MADENCI E. An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory[J]. Theoretical and Applied Fracture Mechanics, 2010, 53(3): 194-204. doi: 10.1016/j.tafmec.2010.08.001
    [27]
    CARTER F W. On the action of locomotive driving wheel[J]. Proceeding of Royal Society of London, 1926, 201: 151-157.
    [28]
    EKBERG A, KABO E, ANDERSSON H. An engineering model for prediction of rolling contact fatigue of railway wheels[J]. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25(10): 899-909. doi: 10.1046/j.1460-2695.2002.00535.x
    [29]
    BENOIT D, SALIMA B, MARION R. Multiscale characterization of head check initiation on rails under rolling contact fatigue: Mechanical and microstructure analysis[J]. Wear, 2016, 366/367: 383-391. doi: 10.1016/j.wear.2016.06.019
    [30]
    田常海. 提速线路钢轨的大修周期[J]. 铁道学报, 2005, 27(4): 78-84. doi: 10.3321/j.issn:1001-8360.2002.04.017

    TIAN Chang-hai. Major repair cycles of rails of speed raising railway lines[J]. Journal of the China Railway Society, 2002, 27(4): 78-84. (in Chinese) doi: 10.3321/j.issn:1001-8360.2002.04.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (535) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return