Volume 21 Issue 3
Aug.  2021
Turn off MathJax
Article Contents
ZHANG Jie, YAO Dan, WANG Rui-qian, XIAO Xin-biao. Decomposition method to determine acoustic indexes of components in low-noise design procedure of high-speed trains[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 248-257. doi: 10.19818/j.cnki.1671-1637.2021.03.017
Citation: ZHANG Jie, YAO Dan, WANG Rui-qian, XIAO Xin-biao. Decomposition method to determine acoustic indexes of components in low-noise design procedure of high-speed trains[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 248-257. doi: 10.19818/j.cnki.1671-1637.2021.03.017

Decomposition method to determine acoustic indexes of components in low-noise design procedure of high-speed trains

doi: 10.19818/j.cnki.1671-1637.2021.03.017
Funds:

National Natural Science Foundation of China 52002257

National Natural Science Foundation of China U1934203

National Natural Science Foundation of China U1834201

Applied Basic Research Program of Sichuan Province 2021YJ0531

State Key Laboratory of Polymer Materials Engineering sklpme2020-3-12

More Information
  • Author Bio:

    ZHANG Jie(1987-), male, associate professor, PhD, zh.receive@gmail.com

  • Received Date: 2020-12-26
    Available Online: 2021-08-27
  • Publish Date: 2021-08-27
  • A method for determining the acoustic indexes of the components based on vehicle noise simulation analysis was proposed. The acoustic indexes of the high-speed train components were divided into noise source and sound transfer path indexes according to the types. The prediction models of high-speed train exterior and interior noise were established respectively by using ray acoustics and statistical energy analysis methods. A set of initial parameters were selected as the model inputs to predict the exterior and interior noise, and the predicted results were compared with the top-level design targets of the vehicle. Based on the noise source, sound transfer path contribution, parameter sensitivity, and multi-objective optimization, the acoustic indexes of the noise source components and sound transfer path components were determined. Analysis results show that according to the exterior noise simulation analysis, the inputs of the noise source parameters can be regarded as a set of determination results of noise source indexes when the predicted exterior noise meets the top-level acoustic design targets and the design margin is within the acceptable range. In determining the sound transfer path indexes based on the interior noise simulation analysis, the inputs of the sound transfer path parameters can be regarded as a set of determination results of sound transfer path indexes when the predicted interior noise meets the top-level acoustic design targets and the design margin is within the acceptable range. However, when the noise source indexes or sound transfer path indexes do not satisfy the vehicle noise requirements, it is necessary to analyze the noise source or sound transfer path contribution, calculate the parameter sensitivity of the main contributing noise source or sound transfer path, and make the main contributing noise source or sound transfer path achieve the top-level acoustic design targets through correction iteration. Low-noise design procedure needs to integrate the feedback of multiple indicators continuously. The acoustic indexes of the components should be adjusted reasonably to ensure that the acoustic indexes of the components not only satisfy the top-level acoustic design targets but also show feasibility. 10 figs, 31 refs.

     

  • loading
  • [1]
    SHEN Zhi-yun. Dynamic environment of high-speed train and its distinguished technology[J]. Journal of the China Railway Society, 2006, 28(4): 1-5. (in Chinese) doi: 10.3321/j.issn:1001-8360.2006.04.001
    [2]
    ZHAI Wan-ming, ZHAO Chun-fa. Frontiers and challenges of science and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. (in Chinese) doi: 10.3969/j.issn.0258-2724.2016.02.001
    [3]
    YANG Guo-wei, WEI Yu-jie, ZHAO Gui-lin, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45: 201507. (in Chinese) doi: 10.6052/1000-0992-14-002
    [4]
    JIN Xue-song. Key problems faced in high-speed train operation[J]. Journal of Zhejiang University—Science A, 2014, 15(12): 936-945.
    [5]
    HARDY A E J. Railway passengers and noise[J]. Journal of Rail and Rapid Transit, 1999, 213(3): 173-180. doi: 10.1243/0954409991531128
    [6]
    GE Jian-min, GUO Lei, GAO Yang, et al. An overview of study on noise control ofhigh speed trains based on temperature gradient[J]. China Basic Science, 2018, 20(6): 15-18, 46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB201806004.htm
    [7]
    SHEN Huo-ming, ZHANG Yu-mei, XIAO Xin-biao, et al. Low-noise optimization design of external corrugated floor for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2011, 11(2): 65-71. (in Chinese) doi: 10.3969/j.issn.1671-1637.2011.02.011
    [8]
    YAO Dan, ZHANG Jie, WANG Rui-qian, et al. Lightweight design and sound insulation characteristic optimisation of railway floating floor structures[J]. Applied Acoustics, 2019, 156: 66-77. doi: 10.1016/j.apacoust.2019.07.005
    [9]
    YAO Dan, ZHANG Jie, WANG Rui-qian, et al. Vibroacoustic damping optimisation of high-speed train floor panels in low- and mid-frequency range[J]. Applied Acoustics, 2021, 174: 107788. doi: 10.1016/j.apacoust.2020.107788
    [10]
    WANG Quan, CHEN Jin, CHENG Jiang-tao, et al. Wind turbine airfoil design method with low noise and experimental analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 23-28. (in Chinese) doi: 10.3969/j.issn.1005-4561.2015.01.010
    [11]
    MA Pin, QIAN Zheng-fang, CHEN Ke, et al. Research on performance of a new-type low-noise multi-blade coupling propeller[J]. Journal of Ship Mechanics, 2014, 18(8): 889-897. (in Chinese) doi: 10.3969/j.issn.1007-7294.2014.08.003
    [12]
    ZHANG Ming-yu, WANG Yong-sheng, LIN Rui-lin, et al. Low-noise optimization design of pumpjet[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(3): 7-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201903002.htm
    [13]
    HE Tao, HAO Xia-ying, WANG Suo-quan, et al. Optimization design and experimental verification on low noise control valve[J]. Journal of Ship Mechanics, 2017, 21(5): 642-650. (in Chinese) doi: 10.3969/j.issn.1007-7294.2017.05.015
    [14]
    WANG Lian-sheng, HAO Zhi-yong, JING Guo-xi, et al. Low noise design of cylinder head cover based on multi-objective topography optimization[J]. Journal of Southwest Jiaotong University, 2012, 47(6): 1064-1068. (in Chinese) doi: 10.3969/j.issn.0258-2724.2012.06.024
    [15]
    ZHANG Jie. An approach of low noise design and experimental investigations into interior noise of high speed trains[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [16]
    ZHANG Jie, XIAO Xin-biao, SHENG Xiao-zhen, et al. An acoustic design procedure for controlling interior noise of high-speed trains[J]. Applied Acoustics, 2020, 168: 107419. doi: 10.1016/j.apacoust.2020.107419
    [17]
    ZHANG Jie, XIAO Xin-biao, SHENG Xiao-zhen, et al. Characteristics of interior noise of a Chinese high-speed train under a variety of conditions[J]. Journal of Zhejiang University—Science A, 2017, 18(8): 617-630. doi: 10.1631/jzus.A1600695
    [18]
    ZHANG Jie, XIAO Xin-biao, SHENG Xiao-zhen, et al. A systematic approach to identify sources of abnormal interior noise for a high-speed train[J]. Shock and Vibration, 2018, 2018: 5085847 http://www.ingentaconnect.com/content/rsoc/10709622/2018/00002018/00000005/art00029
    [19]
    ZHANG Jie, XIAO Xin-biao, SHENG Xiao-zhen, et al. Sound source localisation for a high-speed train and its transfer path to interior noise[J]. Chinese Journal of Mechanical Engineering, 2019, 32: 1-16. doi: 10.1186/s10033-018-0313-7
    [20]
    EADE P W, HARDY A E J. Railway vehicle internal noise[J]. Journal of Sound and Vibration, 1977, 51(3): 403-415. doi: 10.1016/S0022-460X(77)80083-7
    [21]
    WANG De-wei, LI Shuai, ZHANG Jie, et al. Prediction of external noise of high-speed train and analysis of noise source contribution[J]. Journal of Central South University (Science and Technology), 2018, 49(12): 3113-3120. (in Chinese) doi: 10.11817/j.issn.1672-7207.2018.12.026
    [22]
    ZHOU Xin, XIAO Xin-biao, HE Bin, et al. Numerical model for predicting the noise reduction of noise barrier of high speed railway and its test validation[J]. Journal of Mechanical Engineering, 2013, 49(10): 14-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201310004.htm
    [23]
    CHEN Shu-ming, WANG Deng-feng, LIU Bo, et al. Car exterior noise prediction based on statistical energy analysis and semi-infinite fluid method[J]. China Journal of Highway and Transport, 2010, 23(2): 111-115. (in Chinese) doi: 10.3969/j.issn.1001-7372.2010.02.018
    [24]
    ZHANG Jie, XIAO Xin-biao, WANG De-wei, et al. Source contribution analysis for exterior noise of a high-speed train: experiments and simulations[J]. Shock and Vibration, 2018, 2018: 5319460.
    [25]
    ZHENG Xu, HAO Zhi-yong, WANG Xu, et al. A full-spectrum analysis of high-speed train interior noise under multi-physical-field coupling excitations[J]. Mechanical Systems and Signal Processing, 2016, 75: 525-543. doi: 10.1016/j.ymssp.2015.12.010
    [26]
    THOMPSON D J, JONES C J C. Sound radiation from a vibrating railway wheel[J]. Journal of Sound and Vibration, 2002, 253(2): 401-419. doi: 10.1006/jsvi.2001.4061
    [27]
    TIAN Hong-qi. Development of research on aerodynamics of high-speed rails in China[J]. Strategic study of CAE, 2015, 17(4): 30-41. (in Chinese) doi: 10.3969/j.issn.1009-1742.2015.04.004
    [28]
    ZHANG Jie, YAO Dan, WANG Rui-qian, et al. An approach for interior noise prediction of high-speed trains based on experimental statistical energy analysis[J]. Journal of the China Railway Society, 2020, 42(11): 45-52. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.11.007
    [29]
    ZHAO Y J, DENG X, LIU S Q, et al. Interior noise prediction of high-speed train based on hybrid FE-SEA method[C]//Springer. Noise and Vibration Mitigation for Rail Transportation System. Berlin: Springer, 2015: 699-705.
    [30]
    DAI Wen-qiang, ZHENG Xu, HAO Zhi-yong, et al. Prediction of high-speed train interior noise using energy finite element analysis[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(12): 2396-2403. (in Chinese) doi: 10.3785/j.issn.1008-973X.2019.12.018
    [31]
    ZHANG Jie, YAO Dan, WANG Rui-qian, et al. Vibro-acoustic modelling of high-speed train composite floor and contribution analysis of its constituent materials[J]. Composite Structures, 2021, 256: 113049. doi: 10.1016/j.compstruct.2020.113049

Catalog

    Article Metrics

    Article views (566) PDF downloads(35) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return