Volume 21 Issue 3
Aug.  2021
Turn off MathJax
Article Contents
YANG Guang-xue, LI Shuang, ZHANG Zi-fan, LI Qiu-ze, CHEN Liang. Effects of suspension parts at end of high-speed EMUs bogies on frame stress[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 300-310. doi: 10.19818/j.cnki.1671-1637.2021.03.022
Citation: YANG Guang-xue, LI Shuang, ZHANG Zi-fan, LI Qiu-ze, CHEN Liang. Effects of suspension parts at end of high-speed EMUs bogies on frame stress[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 300-310. doi: 10.19818/j.cnki.1671-1637.2021.03.022

Effects of suspension parts at end of high-speed EMUs bogies on frame stress

doi: 10.19818/j.cnki.1671-1637.2021.03.022
Funds:

National Natural Science Foundation of China 12072020

More Information
  • Author Bio:

    YANG Guang-xue(1982-), male, associate professor, PhD, gxyang@bjtu.edu.cn

  • Received Date: 2021-01-07
    Available Online: 2021-08-27
  • Publish Date: 2021-08-27
  • To explore the effects of suspension parts at the end of high-speed EMUs bogies on frame stress, the finite element simulations of bogie frames and end suspension parts were performed in accordance with the UIC 615-4 standard, and the fatigue strength of the frame was investigated. A tracking test was performed under actual operating conditions. The time- and frequency-domain characteristics of the stress at the measuring points at different locations were analyzed, and the equivalent damage was calculated. Through modal calculation, the causes of the significant influences of bogie-end suspension parts on the stress state of the frame side beam end were identified. Analysis results show that the fatigue strength of the spring cap area, which is calculated according to the standard, meets the requirements. The maximum measured equivalent damage at the measuring points of the spring cap far from the auxiliary mounting seat area is 0.01. The maximum measured equivalent damage at the measuring points of the spring cap close to the auxiliary mounting seat area is 0.45, which is significantly higher than that at the measuring points far from the auxiliary mounting seat area. For measuring points of the spring cap close to the auxiliary mounting seat area, the equivalent damage at the measuring points on the outer side of the spring cap, such as those closer to the auxiliary mounting seat area, is higher than that on the inner side, and the maximum difference between the two equivalent damage values is 84.16%. The measured data have a dominant frequency of 38 Hz, which is close to the fourth-order mode of the combination of the auxiliary mounting seat and bogie frame. Combining these observations with the time-frequency analysis of the measured data, it can be deduced that the excitation generated by the combined action of vehicle driving and track irregularity-related wavelengths excites the fourth-order mode of the combination of the auxiliary mounting seat and bogie frame, moreover P2 resonance occurs, resulting in excessive stress in the spring cap area. 2 tabs, 22 figs, 30 refs.

     

  • loading
  • [1]
    姚起杭, 姚军. 结构振动疲劳问题的特点与分析方法[J]. 机械科学与技术, 2000, 19(增1): 56-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX2000S1023.htm

    YAO Qi-hang, YAO Jun. The behavior and analysis of structure vibration fatigue[J]. Mechanical Science and Technology, 2000, 19(S1): 56-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX2000S1023.htm
    [2]
    林晓斌. 基于功率谱密度信号的疲劳寿命估计[J]. 中国机械工程, 1998, 9(11): 16-19. doi: 10.3321/j.issn:1004-132X.1998.11.005

    LIN Xiao-bin. An engineering approach for the prediction of multiaxial fatigue life[J]. China Mechanical Engineering, 1998, 9(11): 16-19. (in Chinese) doi: 10.3321/j.issn:1004-132X.1998.11.005
    [3]
    WIRSCHING P H, SHEHATA A M. Fatigue under wide band random stresses using the rain-flow method[J]. Journal of Engineering Materials and Technology, 1977, 99(3): 205-211. doi: 10.1115/1.3443520
    [4]
    TUNNA J M. Fatigue life prediction for Gaussian random loads at the design stage[J]. Fatigue and Fracture of Engineering Materials and Structures, 1986, 9(3): 169-184. doi: 10.1111/j.1460-2695.1986.tb00444.x
    [5]
    DIRLIK T. Application of computers in fatigue analysis[D]. Coventry: University of Warwick, 1985.
    [6]
    ZHAO W, BAKER M J. On the probability density function of rainflow stress range for stationary Gaussian processes[J]. International Journal of Fatigue, 1992, 14(2): 121-135. doi: 10.1016/0142-1123(92)90088-T
    [7]
    TOVO R. Cycle distribution and fatigue damage under broad-band random loading[J]. International Journal of Fatigue, 2002, 24(11): 1137-1147. doi: 10.1016/S0142-1123(02)00032-4
    [8]
    BENASCIUTTI D, TOVO R. Spectral methods for lifetime prediction under wide-band stationary random processes[J]. International Journal of Fatigue, 2005, 27(8): 867-877. doi: 10.1016/j.ijfatigue.2004.10.007
    [9]
    韩鲁明. 基于CAE技术的某半挂车车架疲劳寿命预估研究[D]. 南京: 南京理工大学, 2007.

    HAN Lu-ming. A prediction approach for fatigue life of a semi-trailer frame based on finite element analysis (FEA) and dynamics multibody system[D]. Nanjing: Nanjing University of Science and Technology, 2007. (in Chinese)
    [10]
    石怀龙, 王建斌, 戴焕云, 等. 地铁车辆轴箱吊耳断裂机理和试验研究[J]. 机械工程学报, 2019, 55(6): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201906017.htm

    SHI Huai-long, WANG Jian-bin, DAI Huan-yun, et al. Crack mechanism and field test of the metro safety hanger[J]. Journal of Mechanical Engineering, 2019, 55(6): 122-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201906017.htm
    [11]
    连青林, 刘志明, 王文静. 提速客车转向架安全吊座疲劳失效机理与改进方法[J]. 交通运输工程学报, 2018, 18(1): 71-78. doi: 10.3969/j.issn.1671-1637.2018.01.007

    LIAN Qing-lin, LIU Zhi-ming, WANG Wen-jing. Fatigue failure mechanism and improvement method of safety suspender mounting base of speed-up passenger car bogie[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 71-78. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.01.007
    [12]
    薛海, 李强. 地铁车辆天线梁振动加速度及动应力试验[J]. 北京交通大学学报, 2015, 39(4): 33-36. doi: 10.3969/j.issn.1672-8106.2015.04.005

    XUE Hai, LI Qiang. Test study on vibration and dynamic stress of subway vehicle's antenna beam[J]. Journal of Beijing Jiaotong University, 2015, 39(4): 33-36. (in Chinese) doi: 10.3969/j.issn.1672-8106.2015.04.005
    [13]
    张丽, 任尊松, 孙守光, 等. 考虑齿轮传动影响的高速动车组电机吊架载荷及动应力研究[J]. 机械工程学报, 2016, 52(4): 133-140. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201604019.htm

    ZHANG Li, REN Zun-song, SUN Shou-guang, et al. Research on dynamic load and stress of high-speed EMU motor hanger considering influence of gear transmission system[J]. Journal of Mechanical Engineering, 2016, 52(4): 133-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201604019.htm
    [14]
    ZHI Peng-peng, XU Yue, CHEN Bing-zhi. Time-dependent reliability analysis of the motor hanger for EMU based on stochastic process[J]. International Journal of Structural Integrity, 2019, 11(3): 453-469. doi: 10.1108/IJSI-07-2019-0075
    [15]
    LI Fan-song, WU Ping-bo, ZENG Jing, et al. Vibration fatigue dynamic stress simulation under multi-load input condition: application to metro lifeguard[J]. Engineering Failure Analysis, 2019, 99(1): 141-152.
    [16]
    沈彩瑜. 铁道车辆转向架构架疲劳强度研究[D]. 成都: 西南交通大学, 2014.

    SHEN Cai-yu. Fatigue strength analysis of the welded bogie frame for railway vehicle[D]. Chengdu: Southwest Jiaotong University, 2014. (in Chinese)
    [17]
    赵永翔, 杨冰, 彭佳纯, 等. 铁道车辆疲劳可靠性设计Goodman-Smith图的绘制与应用[J]. 中国铁道科学, 2005, 26(6): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200506001.htm

    ZHAO Yong-xiang, YANG Bing, PENG Jia-chun, et al. Drawing and application of Goodman-Smith diagram for the design of railway vehicle fatigue reliability[J]. China Railway Science, 2005, 26(6): 8-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200506001.htm
    [18]
    张锁怀, 李永春, 孙军帅. 地铁车辆转向架构架有限元强度计算与分析[J]. 机械设计与制造, 2009, 43(1): 45-47. doi: 10.3969/j.issn.1001-3997.2009.01.018

    ZHANG Suo-huai, LI Yong-chun, SUN Jun-shuai. Strength calculation and analysis on the bogie frame of metro trains based on FEM[J]. Machinery Design and Manufacture, 2009, 43(1): 45-47. (in Chinese) doi: 10.3969/j.issn.1001-3997.2009.01.018
    [19]
    王斌杰, 孙守光, 李强, 等. 基于载荷谱提升转向架构架疲劳可靠性研究[J]. 铁道学报, 2019, 41(2): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201902004.htm

    WANG Bin-jie, SUN Shou-guang, LI Qiang, et al. Research on the improvement of speed increased passenger car bogie frame reliability based on load spectrum[J]. Journal of the China Railway Society, 2019, 41(2): 23-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201902004.htm
    [20]
    咸晓雨. 动应力数据处理及疲劳评估软件系统开发[D]. 北京: 北京交通大学, 2017.

    XIAN Xiao-yu. Systematic development of dynamic stress data processing and fatigue evaluation software[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese)
    [21]
    袁熙, 李舜酩. 疲劳寿命预测方法的研究现状与发展[J]. 航空制造技术, 2005, 48(12): 80-84. doi: 10.3969/j.issn.1671-833X.2005.12.016

    YUAN Xi, LI Shun-ming. Research status and development of forecast method of fatigue life[J]. Aeronautical Manufacturing Technology, 2005, 48(12): 80-84. (in Chinese) doi: 10.3969/j.issn.1671-833X.2005.12.016
    [22]
    任尊松, 谢基龙. 采用等效载荷预测轴重对货车交叉支撑装置疲劳寿命的影响[J]. 机械工程学报, 2008, 44(3): 16-21. doi: 10.3321/j.issn:0577-6686.2008.03.003

    REN Zun-song, XIE Ji-long. Influence on axle load to the service life of the crossbar set of railway freight car with equivalent load[J]. Journal of Mechanical Engineering, 2008, 44(3): 16-21. (in Chinese) doi: 10.3321/j.issn:0577-6686.2008.03.003
    [23]
    郑如军. 长期服役运行条件下动车组转向架构架结构疲劳试验分析[J]. 铁道车辆, 2018, 56(3): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201803004.htm

    ZHENG Ru-jun. Fatigue test and analysis of bogie frame structure of multiple units under long term service operation conditions[J]. Rolling Stock, 2018, 56(3): 14-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201803004.htm
    [24]
    张丽, 任尊松, 孙守光, 等. 构架弹性振动对疲劳寿命影响研究[J]. 铁道机车车辆, 2015, 35(2): 115-119. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201502030.htm

    ZHANG Li, REN Zun-song, SUN Shou-guang, et al. Research on the influence of railway bogie elastic vibration to fatigue life[J]. Railway Locomotive and Car, 2015, 35(2): 115-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201502030.htm
    [25]
    韩鹏, 张卫华. 轮对结构弯曲及型面磨耗对高速列车振动性能的影响[J]. 振动与冲击, 2015, 34(5): 207-212. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201505035.htm

    HAN Peng, ZHANG Wei-hua. Influences of structural bending deformation and profile wear of wheelsets on vibration performance of high-speed trains[J]. Journal of Vibration and Shock, 2015, 34(5): 207-212. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201505035.htm
    [26]
    王萌. 焊接转向架构架线路载荷的特征与应用研究[D]. 北京: 北京交通大学, 2016.

    WANG Meng. Study on characteristics and applications of on-track load of welded bogie frame[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)
    [27]
    于洋, 刘丙林, 马桂财, 等. 城市轨道车辆振动损伤分析与研究[J]. 机车电传动, 2019, 48(4): 120-125. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201904029.htm

    YU Yang, LIU Bing-lin, MA Gui-cai, et al. Research on vibration damage of urban rail vehicles[J]. Electric Drive for Locomotives, 2019, 48(4): 120-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201904029.htm
    [28]
    KASSNER M. Fatigue strength analysis of a welded railway vehicle structure by different methods[J]. International Journal of Fatigue, 2012, 34(1): 103-111. http://www.sciencedirect.com/science/article/pii/S0142112311000375
    [29]
    梁君, 赵登峰. 模态分析方法综述[J]. 现代制造工程, 2006, 28(8): 139-141. https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY200608048.htm

    LIANG Jun, ZHAO Deng-feng. Summary of the model analysis method[J]. Modern Manufacturing Engineering, 2006, 28(8): 139-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY200608048.htm
    [30]
    肖守讷, 李华丽, 阳光武, 等. 轮轨冲击对构架疲劳的影响[J]. 交通运输工程学报, 2008, 8(3): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200803004.htm

    XIAO Shou-ne, LI Hua-li, YANG Guang-wu, et al. Influence of wheel-rail impact on fatigue of bogie frame[J]. Journal of Traffic and Transportation Engineering, 2008, 8(3): 6-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200803004.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (321) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return