Citation: | CAI Lu, LOU Zhen, LI Tian, ZHANG Ji-ye. Characteristics of wind-snow flow around motor and trailer bogies of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 311-322. doi: 10.19818/j.cnki.1671-1637.2021.03.023 |
[1] |
KAMATA Y, YOKOKURA A. Estimation method of snow accretion amount on train bogies[C]//IWAIS. International Workshop on Atmospheric Icing of Structures. Raykjavík: IWAIS, 2019: 1-4.
|
[2] |
CAI L, LOU Z, LI T, et al. Numerical study on the effects of anti-snow deflector on the wind-snow flow underneath a high-speed train[J]. Journal of Applied Fluid Mechanics, 2021, 14(1): 287-299.
|
[3] |
BETTEZ M. Winter technologies for high speed rail[D]. Trondheim: Norwegian University of Science and Technology, 2011.
|
[4] |
KLOOW L. High-speed train operation in winter climate[R]. Stockholm: KTH Railway Group and Transrail, 2011.
|
[5] |
GAO Guang-jun, ZHANG Yan, XIE Fei, et al. Numerical study on the anti-snow performance of deflectors in the bogie region of a high-speed train using the discrete phase model[J]. Journal of Rail and Rapid Transit, 2019, 233(2): 141-159. doi: 10.1177/0954409718785290
|
[6] |
蔡路, 张继业, 李田, 等. 高速列车底部空气流动特性对转向架区域积雪的影响[J]. 交通运输工程学报, 2019, 19(3): 109-121. doi: 10.3969/j.issn.1671-1637.2019.03.012
CAI Lu, ZHANG Ji-ye, LI Tian, et al. Impact of air flow characteristics underneath carbody on snow accumulation on bogie region of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 109-121. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.03.012
|
[7] |
PREMOLI A, ROCCHI D, SCHITO P, et al. Ballast flight under high-speed trains: wind tunnel full-scale experimental tests[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 145: 351-361. doi: 10.1016/j.jweia.2015.03.015
|
[8] |
ZHU J Y, HU Z W. Flow between the train underbody and trackbed around the bogie area and its impact on ballast flight[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 166: 20-28. doi: 10.1016/j.jweia.2017.03.009
|
[9] |
PAZ C, SUÁREZ E, GIL C. Numerical methodology for evaluating the effect of sleepers in the underbody flow of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 167: 140-147 doi: 10.1016/j.jweia.2017.04.017
|
[10] |
PAZ C, SUÁREZ E, GIL C, et al. Effect of realistic ballasted track in the underbody flow of a high-speed train via CFD simulations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 184: 1-9. doi: 10.1016/j.jweia.2018.11.007
|
[11] |
韩运动, 姚松, 陈大伟, 等. 高速列车转向架舱内流场实车测试和数值模拟[J]. 交通运输工程学报, 2015, 15(6): 51-60. doi: 10.3969/j.issn.1671-1637.2015.06.007
HAN Yun-dong, YAO Song, CHEN Da-wei, et al. Real vehicle test and numerical simulation of flow field in high-speed train bogie cabin[J]. Journal of Traffic and Transportation Engineering, 2015, 15(6): 51-60. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.06.007
|
[12] |
李田, 戴志远, 刘加利, 等. 中国高速列车气动减阻优化综述[J]. 交通运输工程学报, 2021, 21(1): 59-80. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101006.htm
LI Tian, DAI Zhi-yuan, LIU Jia-li, et al. Review on aerodynamic drag reduction optimization of high-speed trains in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 59-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101006.htm
|
[13] |
SOPER D, FLYNN D, BAKER C, et al. A comparative study of methods to simulate aerodynamic flow beneath a high-speed train[J]. Journal of Rail and Rapid Transit, 2018, 232(5): 1464-1482. doi: 10.1177/0954409717734090
|
[14] |
SHISHIDO M, NAKADE K, IDO A. Development of deflector to decrease snow-accretion to truck of a vehicle[J]. RTRI Report, 2009, 23(3): 29-34. (in Japanese) http://www.rtri.or.jp/eng/publish/rtrirep/2009/abst/rep03_papers5.pdf
|
[15] |
WANG Jia-bin, GAO Guang-jun, ZHANG Yan, et al. Anti-snow performance of snow shields designed for brake calipers of a high-speed train[J]. Journal of Rail and Rapid Transit, 2019, 233(2): 121-140. doi: 10.1177/0954409718783327
|
[16] |
WANG Jia-bin, ZHANG Jie, XIE Fei, et al. A study of snow accumulating on the bogie and the effects of deflectors on the de-icing performance in the bogie region of a high-speed train[J]. Cold Regions Science and Technology, 2018, 148: 121-130. doi: 10.1016/j.coldregions.2018.01.010
|
[17] |
WANG Jia-bin, ZHANG Jie, ZHANG Yan, et al. Impact of bogie cavity shapes and operational environment on snow accumulating on the bogies of high-speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 176: 211-224. doi: 10.1016/j.jweia.2018.03.027
|
[18] |
PARADOT N, ALLAIN E, CROUÉ R, et al. Development of a numerical modeling of snow accumulation on a high speed train[C]//CCP. The Second International Conference on Railway Technology: Research, Development and Maintenance. Stirlingshire: CCP, 2014: 1-17.
|
[19] |
丁叁叁, 田爱琴, 董天韵, 等. 端面下斜导流板对高速列车转向架防积雪性能的影响[J]. 中南大学学报(自然科学版), 2016, 47(4): 1400-1405. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201604041.htm
DING San-san, TIAN Ai-qin, DONG Tian-yun, et al. Influence of inclined guiding plate on anti-snow performance of high-speed train bogie[J]. Journal of Central South University (Science and Technology), 2016, 47(4): 1400-1405. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201604041.htm
|
[20] |
TOMINAGA Y. Computational fluid dynamics simulation of snowdrift around buildings: past achievements and future perspectives[J]. Cold Regions Science and Technology, 2018, 150: 2-14. doi: 10.1016/j.coldregions.2017.05.004
|
[21] |
PANKAJAKSHAN R, MITCHELL B J, TAYLOR L K. Simulation of unsteady two-phase flows using a parallel Eulerian-Lagrangian approach[J]. Computers and Fluids, 2011, 41(1): 20-26. doi: 10.1016/j.compfluid.2010.09.020
|
[22] |
CAI Lu, LOU Zhen, LIU Nan, et al. Numerical investigation of the deposition characteristics of snow on the bogie of a high-speed train[J]. Fluid Dynamics and Materials Processing, 2020, 16(1): 41-53. doi: 10.32604/fdmp.2020.07731
|
[23] |
蔡路, 李田, 张继业. 高速列车转向架雪粒沉积特性数值研究[J]. 浙江大学学报(工学版), 2020, 54(4): 804-815. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202004021.htm
CAI Lu, LI Tian, ZHANG Ji-ye. Numerical study on deposition characteristics of snow particle on bogie of high-speed train[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(4): 804-815. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202004021.htm
|
[24] |
蔡路, 张继业, 李田. 高速列车转向架区域雪粒运动特性分析[J]. 中国科学: 技术科学, 2019, 49(12): 1593-1602. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201912018.htm
CAI Lu, ZHANG Ji-ye, LI Tian. Analysis of the motion characteristics of snow particle in the bogie region of a high-speed train[J]. Scientia Sinica Technologica, 2019, 49(12): 1593-1602. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201912018.htm
|
[25] |
SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Computers and Fluids, 1995, 24(3): 227-238. doi: 10.1016/0045-7930(94)00032-T
|
[26] |
MORSI S A, ALEXANDER A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55(2): 193-208. doi: 10.1017/S0022112072001806
|
[27] |
ABRAHAMSSON P, ENG M, RASMUSON A. An infield study of road snow properties related to snow-car adhesion and snow smoke[J]. Cold Regions Science and Technology, 2018, 145: 32-39. doi: 10.1016/j.coldregions.2017.09.008
|
[28] |
CLIFTON A, LEHNING M. Improvement and validation of a snow saltation model using wind tunnel measurements[J]. Earth Surface Processes and Landforms, 2008, 33(14): 2156-2173. doi: 10.1002/esp.1673/pdf
|
[29] |
GOSMAN A D, LOANNIDES E. Aspects of computer simulation of liquid-fueled combustors[J]. Journal of Energy, 1983, 7(6): 482-490. doi: 10.2514/3.62687
|
[30] |
ZWAAFTINK C D G, DIEBOLD M, HORENDER S, et al. Modelling small-scale drifting snow with a Lagrangian stochastic model based on large-eddy simulations[J]. Boundary-Layer Meteorology, 2014, 153(1): 117-139. doi: 10.1007/s10546-014-9934-2
|