Citation: | TAN Yi-qiu, XIAO Shen-qing, XIONG Xue-tang. Review on detection and prediction methods for pavement skid resistance[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 32-47. doi: 10.19818/j.cnki.1671-1637.2021.04.002 |
[1] |
邝宏柱, 廖志高, 柳本民. 高速公路隧道路面抗滑性能评价标准研究[J]. 公路, 2007, 4(9): 85-88. doi: 10.3969/j.issn.0451-0712.2007.09.020
KUANG Hong-zhu, LIAO Zhi-gao, LIU Ben-min. A study on evaluation standard of skid resistance performance for expressway tunnel pavement[J]. Highway, 2007, 4(9): 85-88. (in Chinese) doi: 10.3969/j.issn.0451-0712.2007.09.020
|
[2] |
NAJAFI S, FLINTSCH G W, MEDINA A. Linking roadway crashes and tire-pavement friction: a case study[J]. International Journal of Pavement Engineering, 2017, 18(2): 119-127. doi: 10.1080/10298436.2015.1039005
|
[3] |
KOKKALIS A G, PANAGOULI O K. Fractal evaluation of pavement skid resistance variations. I: surface wetting[J]. Chaos Solitons and Fractals, 1998, 9(11): 1875-1890. doi: 10.1016/S0960-0779(97)00138-0
|
[4] |
AHAMMED M A, TIGHE R L. Early-life, long-term, and seasonal variations in skid resistance in flexible and rigid pavements[J]. Transportation Research Record, 2009(2094): 112-120. http://www.researchgate.net/publication/238197006_Early-Life_Long-Term_and_Seasonal_Variations_in_Skid_Resistance_in_Flexible_and_Rigid_Pavements
|
[5] |
HALL J W, SMITH K L, TITUS-GLOVER L, et al. Guide for pavement friction[R]. Washington DC: National Cooperative Highway Research Program, 2009.
|
[6] |
王旭东. 足尺路面试验环道路面结构与材料设计[J]. 公路交通科技, 2017, 34(6): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201706005.htm
WANG Xu-dong. Design of pavement structure and material for full-scale test track[J]. Journal of Highway and Transportation Research and Development, 2017, 34(6): 30-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201706005.htm
|
[7] |
ZHANG Jun-ning, YANG Shao-pu, LI Shao-hua, et al. Influence of vehicle-road coupled vibration on tire adhesion based on nonlinear foundation[J]. Applied Mathematics and Mechanics (English Edition), 2021, 42: 607-624. doi: 10.1007/s10483-021-2724-6
|
[8] |
黄晓明, 郑彬双. 沥青路面抗滑性能研究现状与展望[J]. 中国公路学报, 2019, 32(4): 32-49. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201904004.htm
HUANG Xiao-ming, ZHENG Bin-shuang. Research status and progress for skid resistance performance of asphalt pavements[J]. China Journal of Highway and Transport, 2019, 32(4): 32-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201904004.htm
|
[9] |
GROSCH K. Visco-elastic properties and the friction of solids: relation between the friction and visco-elastic properties of rubber[J]. Nature, 1963, 197: 858-859. doi: 10.1038/197858a0
|
[10] |
LORENZ B, PYCKHOUT-HINTZEN W, PERSSON B N J. Master curve of viscoelastic solid: using causality to determine the optimal shifting procedure, and to test the accuracy of measured data[J]. Polymer, 2014, 55(2): 565-571. doi: 10.1016/j.polymer.2013.12.033
|
[11] |
LORENZ B, OH Y R, NAM S K, et al. Rubber friction on road surfaces: experiment and theory for low sliding speeds[J]. Journal of Chemical Physics, 2015, 142(19): 194701. doi: 10.1063/1.4919221
|
[12] |
SCARAGGI M, PERSSON B N J. Rolling friction: comparison of analytical theory with exact numerical results[J]. Tribology Letters, 2014, 55(1): 15-21. doi: 10.1007/s11249-014-0327-y
|
[13] |
MATAEI B, ZAKERI H, ZAHEDI M, et al. Pavement friction and skid resistance measurement methods: a literature review[J]. Open Journal of Civil Engineering, 2016, 6(4): 537-565. doi: 10.4236/ojce.2016.64046
|
[14] |
LEI Yong, HU Xiao-di, WANG Hai-nian, et al. Effects of vehicle speeds on the hydrodynamic pressure of pavement surface: measurement with a designed device[J]. Measurement, 2017, 98: 1-9. http://www.sciencedirect.com/science/article/pii/S026322411630673X
|
[15] |
ANUPAM K. Numerical simulation of vehicle hydroplaning and skid resistance on grooved pavement[D]. Singapore: National University of Singapore, 2012.
|
[16] |
KOGBARA R B, MASAD E A, KASSEM E, et al. A state-of-the-art review of parameters influencing measurement and modeling of skid resistance of asphalt pavements[J]. Construction and Building Materials, 2016, 114: 602-617. doi: 10.1016/j.conbuildmat.2016.04.002
|
[17] |
TAN Tan, FAN Ze-peng, XING Chao, et al. Evaluation of geometric characteristics of fine aggregate and its impact on viscoelastic property of asphalt mortar[J]. Applied Sciences, 2019, DOI: 10.3390/app10010130.
|
[18] |
KANE M, EDMONDSON V. Long-term skid resistance of asphalt surfacings and aggregates' mineralogical composition: generalisation to pavements made of different aggregate types[J]. Wear, 2020, 454/455: 203339. doi: 10.1016/j.wear.2020.203339
|
[19] |
DE LUCA M, ABBONDATI F, PIROZZI M, et al. Preliminary study on runway pavement friction decay using data mining[J]. Transportation Research Procedia, 2016, 14: 3751-3760. doi: 10.1016/j.trpro.2016.05.460
|
[20] |
COUTERMARSH B A, SHOOP S A. Tire slip-angle force measurements on winter surfaces[J]. Journal of Terramechanics, 2009, 46(4): 157-163. doi: 10.1016/j.jterra.2008.08.002
|
[21] |
WAMBOLDJ C, KULAKOWSKI B T. Limitations of using skid number in accident analysis and pavement management[J]. Transportation Research Record, 1991(1311): 43-50. http://onlinepubs.trb.org/Onlinepubs/trr/1991/1311/1311-007.pdf
|
[22] |
GROSCH K A. Rubber abrasion and tire wear[J]. Rubber Chemistry and Technology, 2008, 81(3): 470-505. doi: 10.5254/1.3548216
|
[23] |
WANG Shao-wei, VENEZIANO D, HUANG Jiang, et al. Estimating wet-pavement exposure with precipitation data: final report[R]. Sacramento: California Department of Transportation (Caltrans) Division of Research and Innovation, 2006.
|
[24] |
AL-QADI I L, FLINTSCH G W, ROOSEVELT D S, et al. Feasibility of using friction indicators to improve winter maintenance operations and mobility[R]. Washington DC: National Cooperative Highway Research Program, 2002.
|
[25] |
HAN Sen, LIU Meng-mei, FWA T F. Testing for low-speed skid resistance of road pavements[J]. Road Materials and Pavement Design, 2020, 21(5): 1312-1325. doi: 10.1080/14680629.2018.1552619
|
[26] |
CHEN Bo, ZHANG Xiao-ning, YU Jiang-miao, et al. Impact of contact stress distribution on skid resistance of asphalt pavements[J]. Construction and Building Materials, 2017, 133: 330-339. doi: 10.1016/j.conbuildmat.2016.12.078
|
[27] |
KHALEGHIAN S, EMAMI A, TAHERI S. A technical survey on tire-road friction estimation[J]. Friction, 2017, 5(2): 123-146. doi: 10.1007/s40544-017-0151-0
|
[28] |
PERERA R W, KOHN S D. NCHRP web document 42: issues in pavement smoothness[R]. Washington DC: Transportation Research Board, 2002.
|
[29] |
MASAD E, REZAEI A, CHOWDHURY A, et al. Predicting asphalt mixture skid resistance based on aggregate characteristics[R]. Canyon: Texas Transportation Institute, 2009.
|
[30] |
SAYERS M W, KARAMIHAS S M. Interpretation of road roughness profile data[R]. McLean: Federal Highway Administration, 1996.
|
[31] |
GOUBERT L, BERGIERS A. About the reproducibility of texture profiles and the problem of spikes[C]//VTTI. 7th Symposium on Pavement Surface Characteristics: SURF 2012. Norfolk: VTTI, 2012: 1-14.
|
[32] |
KATICHA S W, MOGROVEJO D E, FLINTSCH G W, et al. Adaptive spike removal method for high-speed pavement macrotexture measurements by controlling the false discovery rate[J]. Transportation Research Record, 2015(2525): 100-101. http://www.researchgate.net/publication/290471545_Adaptive_Spike_Removal_Method_for_High-Speed_Pavement_Macrotexture_Measurements_by_Controlling_the_False_Discovery_Rate
|
[33] |
BENJAMINI Y, HOCHBERG Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing[J]. Journal of the Royal Statistical Society, Series B: Methodological, 1995, 57(1): 289-300. doi: 10.1111/j.2517-6161.1995.tb02031.x
|
[34] |
STOREY J D, TIBSHIRANI R. Statistical significance for genomewide studies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(16): 9440-9445. doi: 10.1073/pnas.1530509100
|
[35] |
RICHARD C, SOHANEY, ROBERT O R. Three dimensional pavement texture evaluation at Mn/ROAD[R]. Austin: Minnesota Department of Transportation Research Services Section, 2012.
|
[36] |
DONG N, PROZZI J A, NI F. Reconstruction of 3D pavement texture on handling dropouts and spikes using multiple data processing methods[J]. Sensors, 2019, DOI: 10.3390/s19020278.
|
[37] |
CHU L J, FWA T F. Pavement skid resistance consideration in rain-related wet-weather speed limits determination[J]. Road Materials and Pavement Design, 2018, 19(2): 334-352. doi: 10.1080/14680629.2016.1261723
|
[38] |
WASILEWSKA M, GARDZIEJCZYK W, GIERASIMIUK P. Comparison of measurement methods used for evaluation the skid resistance of road pavements in Poland—case study[J]. International Journal of Pavement Engineering, 2020, 21(13): 1662-1668. doi: 10.1080/10298436.2018.1562188
|
[39] |
LEU M C, HENRY J J. Prediction of skid resistance as a function of speed from pavement texture[J]. Transportation Research Record, 1978(666): 7-13. http://www.researchgate.net/publication/282991986_PREDICTION_OF_SKID_RESISTANCE_AS_A_FUNCTION_OF_SPEED_FROM_PAVEMENT_TEXTURE_MEASUREMENTS
|
[40] |
FUVLÖP I A, BOGÁRDI I, GULYÁS A, et al. Use of friction and texture in pavement performance modeling[J]. Journal of Transportation Engineering, 2000, 126(3): 243-248. doi: 10.1061/(ASCE)0733-947X(2000)126:3(243)
|
[41] |
ANDRIEJAUSKASA T, VOROBJOVASA V, MIELONASB V. Evaluation of skid resistance characteristics and measurement methods[C]//VGTU. 9th International Conference on Environmental Engineering. Vilnius: VGTU, 2014: 1-8.
|
[42] |
SENGOZ B, TOPAL A, TANYEL S. Comparison of pavement surface texture determination by sand patch test and 3D laser scanning[J]. Periodica Polytechnica Civil Engineering, 2012, 56(1): 73-78. doi: 10.3311/pp.ci.2012-1.08
|
[43] |
UECKERMANN A, WANG D, OESER M, et al. Calculation of skid resistance from texture measurements[J]. Journal of Traffic and Transportation Engineering (English Edition), 2015, 2(1): 3-16. doi: 10.1016/j.jtte.2015.01.001
|
[44] |
LI Lin, WANG K C P, LI Q J. Geometric texture indicators for safety on AC pavements with 1 mm 3D laser texture data[J]. International Journal of Pavement Research and Technology, 2016, 9(1): 49-62. doi: 10.1016/j.ijprt.2016.01.004
|
[45] |
王旭东, 张蕾, 周兴业, 等. RIOHTRACK足尺路面试验环道2017年试验研究概况[J]. 公路交通科技, 2018, 35(4): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201804001.htm
WANG Xu-dong, ZHANG Lei, ZHOU Xing-ye, et al. Review of researches of RIOHTRACK in 2017[J]. Journal of Highway and Transportation Research and Development, 2018, 35(4): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201804001.htm
|
[46] |
廖亦源. 基于足尺环道的沥青路面抗滑性能衰变规律的研究[D]. 重庆: 重庆交通大学, 2019.
LIAO Yi-yuan. Research on regularity of skid resistance regradation of asphalt pavement based on full-scale pavement loop[D]. Chongqing: Chongqing Jiaotong University, 2019. (in Chinese)
|
[47] |
LI Q, YANG G, WANG K C P, et al. Novel macro- and microtexture indicators for pavement friction by using high-resolution three-dimensional surface data[J]. Transportation Research Record, 2017(2641): 164-176. http://www.researchgate.net/publication/319605459_Novel_Macro-_and_Microtexture_Indicators_for_Pavement_Friction_by_Using_High-Resolution_Three-Dimensional_Surface_Data
|
[48] |
陈德. 沥青混合料表面构造图像评价方法及抗滑降噪性能预测研究[D]. 西安: 长安大学, 2015.
CHEN De. Study on image-based texture analysis method and prediction of skid-resistance and tire/pavement noise reduction of HMA[D]. Xi'an: Chang'an University, 2015. (in Chinese)
|
[49] |
RADO Z, KANE M. An initial attempt to develop an empirical relation between texture and pavement friction using the HHT approach[J]. Wear, 2014, 309(1/2): 233-246. doi: 10.1080/10298436.2014.972956
|
[50] |
ZELELEW H, KHASAWNEH M, ABBAS A. Wavelet-based characterisation of asphalt pavement surface macro-texture[J]. Road Materials and Pavement Design, 2014, 15(3): 622-641. doi: 10.1080/14680629.2014.908137
|
[51] |
周兴林, 肖神清, 刘万康, 等. 沥青路面表面纹理的多重分形特征及其磨光行为[J]. 东南大学学报(自然科学版), 2018, 48(1): 175-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201801027.htm
ZHOU Xing-lin, XIAO Shen-qing, LIU Wan-kang, et al. Multifractal characteristics and polishing behaviors of surface texture on asphalt pavement[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(1): 175-180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201801027.htm
|
[52] |
周兴林, 肖神清, 肖旺新, 等. 粗集料表面纹理粗糙度的多重分形评价[J]. 华中科技大学学报(自然科学版), 2017, 45(2): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201702006.htm
ZHOU Xing-lin, XIAO Shen-qing, XIAO Wang-xin, et al. Multi-fractal evaluation on roughness of coarse aggregate surface texture[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(2): 29-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201702006.htm
|
[53] |
XIAO Shen-qing, TAN Yi-qiu, XING Chao, et al. Scale demarcation of self-affine surface of coarse aggregate and its relationship with rubber friction[J]. Road Materials and Pavement Design, 2020, DOI: 10.1080/14680629.2020.1728365.
|
[54] |
YU Miao, YOU Zhan-ping, WU Guo-xiong, et al. Measurement and modeling of skid resistance of asphalt pavement: a review[J]. Construction and Building Materials, 2020, 260: 119878. doi: 10.1016/j.conbuildmat.2020.119878
|
[55] |
BROWNE A, CHENG H, KISTLER A. Dynamic hydroplaning of pneumatic tires[J]. Wear, 1972, 20(1): 1-28. doi: 10.1016/0043-1648(72)90284-0
|
[56] |
GROGGER H, WEISS M. Calculation of the three-dimensional free surface flow around an automobile tire[J]. Tire Science and Technology, 1996, 24(1): 39-49. doi: 10.2346/1.2137511
|
[57] |
MARTIN C. Hydroplaning of tire hydroplaning: final report[R]. Atlanta: Georgia Institute of Technology, 1966.
|
[58] |
STOCKER A J, DOTSON J T, IVEY D L. Automobile tire hydroplaning: a study of wheel spin-down and other variables[R]. Canyon: Texas Transportation Institute, 1974.
|
[59] |
DINESCU C, HIRSCH C, LEONARD B, et al. Fluid-structure interaction model for hydroplaning simulations[J]. SAE International, 2006, DOI: 10.4271/2006-01-1190.
|
[60] |
CHO J, LEE H, SOHN J, et al. Numerical investigation of hydroplaning characteristics of three-dimensional patterned tire[J]. European Journal of Mechanics A: Solids, 2006, 25(6): 914-926. doi: 10.1016/j.euromechsol.2006.02.007
|
[61] |
FWA T F. Skid resistance determination for pavement management and wet-weather road safety[J]. International Journal of Transportation Science and Technology, 2017, 6(3): 217-227. doi: 10.1016/j.ijtst.2017.08.001
|
[62] |
CHU L, FWA T F. Incorporating pavement skid resistance and hydroplaning risk considerations in asphalt mix design[J]. Journal of Transportation Engineering, 2016, 142(10): 0401603. http://www.researchgate.net/publication/303358028_Incorporating_Pavement_Skid_Resistance_and_Hydroplaning_Risk_Considerations_in_Asphalt_Mix_Design
|
[63] |
FWAT F, PASINDU H R, ONG G P. Critical rut depth for pavement maintenance based on vehicle skidding and hydroplaning consideration[J]. Journal of Transportation Engineering, 2012, 138(4): 423-429. doi: 10.1061/(ASCE)TE.1943-5436.0000336
|
[64] |
ANUPAM K, SRIRANGAM S K, SCARPAS A, et al. Influence of temperature on tire-pavement friction: analyses[J]. Transportation Research Record, 2013(2369): 114-124. http://www.researchgate.net/publication/262419305_Influence_of_Temperature_on_Tire-Pavement_Friction-I_Laboratory_Tests_and_Finite_Element_Modeling
|
[65] |
SRIRANGAM S K, ANUPAM K, KASBERGEN C, et al. Analysis of asphalt mix surface-tread rubber interaction by using finite element method[J]. Journal of Traffic and Transportation Engineering (English Edition), 2017, 4(4): 395-402. doi: 10.1016/j.jtte.2017.07.004
|
[66] |
SRIRANGAM S K, ANUPAM K, SCARPAS A, et al. Development of a thermomechanical tyre-pavement interaction model[J]. International Journal of Pavement Engineering, 2014, 16(8): 721-729. http://www.researchgate.net/profile/Santosh_Srirangam/publication/262418801_Development_of_a_Thermomechanical_Tire-Pavement_Interaction_Model/links/55db4cb508aec156b9afe73b.pdf
|
[67] |
SRIRANGAM S K, ANUPAM K, SCARPAS A, et al. Safety aspects of wet asphalt pavement surfaces through field and numerical modeling investigations[J]. Transportation Research Record, 2014(2446): 37-51. http://www.researchgate.net/publication/262419448_Safety_Aspects_of_Wet_Asphalt_Pavement_Surfaces_Through_Field_and_Numerical_Modeling_Investigations
|
[68] |
TANG T, ANUPAM K, KASBERGEN C, et al. A finite element study of rain intensity on skid resistance for permeable asphalt concrete mixes[J]. Construction and Building Materials, 2019, 220: 464-475. doi: 10.1016/j.conbuildmat.2019.05.185
|
[69] |
PERSSON B N J. Theory of rubber friction and contact mechanics[J]. The Journal of Chemical Physics, 2001, 115(8): 3840-3861. doi: 10.1063/1.1388626
|
[70] |
PERSSON B N J. Rubber friction: role of the flash temperature[J]. Journal of Physics: Condensed Matter, 2006, 18(32): 1-22.
|
[71] |
KLVPPEL M, HEINRICH G. Rubber friction on self-affine road tracks[J]. Rubber Chemistry and Technology, 2000, 73(4): 578-606. doi: 10.5254/1.3547607
|
[72] |
LEGAL A, KLVPPEL M. Investigation and modelling of rubber stationary friction on rough surfaces[J]. Journal of Physics: Condensed Matter, 2007, 20(1): 015007. http://adsabs.harvard.edu/abs/2008JPCM...20a5007L
|
[73] |
LORENZ B, CARBONE G, SCHULZE C. Average separation between a rough surface and a rubber block: comparison between theories and experiments[J]. Wear, 2010, 268(7/8): 984-990. http://www.sciencedirect.com/science/article/pii/S0043164809006516
|
[74] |
MOTAMEDI M. Road surface measurement and multi-scale modeling of rubber road contact and adhesion[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2015.
|
[75] |
ALHASAN A, SMADI O, BOU-SAAB G, et al. Pavement friction modeling using texture measurements and pendulum skid tester[J]. Transportation Research Record, 2018(2672): 440-451. http://www.researchgate.net/publication/325462461_Pavement_Friction_Modeling_using_Texture_Measurements_and_Pendulum_Skid_Tester
|
[76] |
KANE M, CEREZO V. A contribution to tire/road friction modeling: from a simplified dynamic frictional contact model to a "dynamic friction tester" model[J]. Wear, 2015, 342/343: 163-171. doi: 10.1016/j.wear.2015.08.007
|
[77] |
TAN Tan, XING Chao, TAN Yi-qiu, et al. Safety aspects on icy asphalt pavement in cold region through field investigations[J]. Cold Regions Science and Technology, 2019, 161: 21-31. doi: 10.1016/j.coldregions.2019.02.010
|
[78] |
TAN Tan, XING Chao, TAN Yi-qiu, et al. Rubber friction on icy pavement: experiments and modeling[J]. Cold Regions Science and Technology, 2020, 174: 103022. doi: 10.1016/j.coldregions.2020.103022
|
[79] |
沙爱民, 童峥, 高杰. 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报, 2018, 31(1): 1-10. doi: 10.3969/j.issn.1001-7372.2018.01.001
SHA Ai-min, TONG Zheng, GAO Jie. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31(1): 1-10. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.01.001
|
[80] |
CHEN Wei-wei, WANG Wei-xing, WANG Kevin, et al. Lane departure warning systems and lane line detection methods based on image processing and semantic segmentation: a review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(6): 748-774. doi: 10.1016/j.jtte.2020.10.002
|
[81] |
MAEDA H, SEKIMOTO Y, SETO T, et al. Road damage detection and classification using deep neural networks with smartphone images[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1127-1141. doi: 10.1111/mice.12387
|
[82] |
NAJAFI S, FLINTSCH G W, KHALEGHIAN S. Pavement friction management-artificial neural network approach[J]. International Journal of Pavement Engineering, 2016, 20(2): 125-135.
|
[83] |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958. http://dl.acm.org/citation.cfm?id=2670313
|
[84] |
MARCELINO P, LURDES A M, FORTUNATO E, et al. Machine learning for pavement friction prediction using scikit-learn[C]//Springer. 18th EPIA Conference on Artificial Intelligence. Berlin: Springer, 2017: 331-342.
|
[85] |
TONG Zheng, GAO Jie, SHA Ai-min, et al. Convolutional neural network for asphalt pavement surface texture analysis[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1056-1072. doi: 10.1111/mice.12406
|
[86] |
ZHAN Y, LI J Q, YANG G W, et al. Friction-ResNets: deep residual network architecture for pavement skid resistance evaluation[J]. Journal of Transportation Engineering, Part B: Pavements, 2020, 146(3): 04020027. doi: 10.1061/JPEODX.0000187
|
[87] |
KANAFI M M, TUONONEN A J. Top topography surface roughness power spectrum for pavement friction evaluation[J]. Tribology International, 2017, 107: 240-249. doi: 10.1016/j.triboint.2016.11.038
|
[88] |
KOGBARA R B, MASAD E A, WOODWARD D, et al. Relating surface texture parameters from close range photogrammetry to grip-tester pavement friction measurements[J]. Construction and Building Materials, 2018, 166: 227-240. doi: 10.1016/j.conbuildmat.2018.01.102
|
[89] |
DING S, WANG K, YANG E, et al. Influence of effective texture depth on pavement friction based on 3D texture area[J]. Construction and Building Materials, 2021, 287(5/6): 123002. http://www.sciencedirect.com/science/article/pii/S0950061821007625
|