Citation: | MA Yong-jie, CHENG Shi-sheng, MA Yun-ting, MA Yi-de. Review of convolutional neural network and its application in intelligent transportation system[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 48-71. doi: 10.19818/j.cnki.1671-1637.2021.04.003 |
[1] |
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201706001.htm
ZHOU Fei-yan, JIN Lin-peng, DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201706001.htm
|
[2] |
MCCULLOCH W S, PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics, 1943, 5: 115-133. doi: 10.1007/BF02478259
|
[3] |
ROSENBLATT F. The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6): 386-408. doi: 10.1037/h0042519
|
[4] |
WIDROW B, HOFF M E. Associative storage and retrieval of digital information in networks of adaptive "neurons"[J]. Biological Prototypes and Synthetic Systems, 1962: 160-166. doi: 10.1007/978-1-4684-1716-6_25
|
[5] |
MINSKY M L, PAPERT S A. Perceptrons[M]. Cambridge: MIT Press, 1969.
|
[6] |
KOHONEN T. Self-organized formation of topologically correct feature maps[J]. Biological Cybernetics, 1982, 43: 59-69. doi: 10.1007/BF00337288
|
[7] |
CARPENTER G A, GROSSBERG S. The ART of adaptive pattern recognition by a self-organizing neural network[J]. IEEE Computer, 1988, 21(3): 77-88. doi: 10.1109/2.33
|
[8] |
HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(8): 2554-2558. doi: 10.1073/pnas.79.8.2554
|
[9] |
HOPFIELD J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(10): 3088-3092. doi: 10.1073/pnas.81.10.3088
|
[10] |
HOPFIELD J J, TANK D W. "Neural" computation of decisions in optimization problems[J]. Biological Cybernetics, 1985, 52: 141-152. http://ci.nii.ac.jp/naid/10000046381
|
[11] |
HOPFIELD J J, TANK D. Computing with neural circuits: a model[J]. Science, 1986, 233(4764): 625-633. doi: 10.1126/science.3755256
|
[12] |
HINTON G E, SEJNOWSKI T J. Optimal perceptual inference[C]//IEEE. 2007 IEEE International Conference on Image Processing. New York: IEEE, 1983: 448-453.
|
[13] |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536. doi: 10.1038/323533a0
|
[14] |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. doi: 10.1126/science.1127647
|
[15] |
BENGIO Y, LAMBLIN P, DAN P, et al. Greedy layer-wise training of deep networks[C]//NeurIPS. 20th Annual Conference on Neural Information Processing Systems. San Diego: NeurIPS, 2006: 153-160.
|
[16] |
VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11: 3371-3408. http://dl.acm.org/citation.cfm?id=1953039
|
[17] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
|
[18] |
张晓男, 钟兴, 朱瑞飞, 等. 基于集成卷积神经网络的遥感影像场景分类[J]. 光学学报, 2018, 38(11): 1128001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201811042.htm
ZHANG Xiao-nan, ZHONG Xing, ZHU Rui-fei, et al. Scene classification of remote sensing images based on integrated convolutional neural networks[J]. Acta Optica Sinica, 2018, 38(11): 1128001. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201811042.htm
|
[19] |
LECUN Y L, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
|
[20] |
DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//IEEE. 2009 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2009: 248-255.
|
[21] |
HUBEL D H, WIESEL T N. Receptive fields binocular interaction and functional architecture in the cat's visual cortex[J]. Journal of Physiology, 1962, 160: 106-154. doi: 10.1113/jphysiol.1962.sp006837
|
[22] |
FUKUSHIMA K. Neocognitron: a self- organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics, 1980, 36: 193-202. doi: 10.1007/BF00344251
|
[23] |
ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Springer. 13th European Conference on Computer Vision. Berlin: Springer, 2014: 818-833.
|
[24] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//ICLR. 3rd International Conference on Learning Representations. La Jolla: ICLR, 2015: 1-14.
|
[25] |
SZEGEDY C, LIU Wei, JIA Yang-qing, et al. Going deeper with convolutions[C]//IEEE. 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 1-9.
|
[26] |
HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Deep residual learning for image recognition[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778.
|
[27] |
HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 2261-2269.
|
[28] |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//ICML. 32nd International Conference on Machine Learning. San Diego: ICML, 2015: 448-456.
|
[29] |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 2818-2826.
|
[30] |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-4, inception-ResNet and the impact of residual connections on learning[C]//AAAI. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2017: 4278-4284.
|
[31] |
DAI Ji-feng, QI Hao-zhi, XIONG Yue-wen, et al. Deformable convolutional networks[C]//IEEE. 2017 IEEE International Conference on Computer Vision. New York: IEEE, 2017: 764-773.
|
[32] |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. doi: 10.1109/TPAMI.2016.2572683
|
[33] |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 1800-1807.
|
[34] |
ZHANG Xiang-yu, ZHOU Xin-yu, LIN Meng-xiao, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 6848-6856.
|
[35] |
HU Jie, SHEN Lin, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. doi: 10.1109/TPAMI.2019.2913372
|
[36] |
高鑫, 李慧, 张义, 等. 基于可变形卷积神经网络的遥感影像密集区域车辆检测方法[J]. 电子与信息学报, 2018, 40(12): 2812-2819. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201812003.htm
GAO Xin, LI Hui, ZHANG Yi, et al. Vehicle detection in remote sensing images of dense areas based on deformable convolution neural network[J]. Journal of Electronics and Information Technology, 2018, 40(12): 2812-2819. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201812003.htm
|
[37] |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[C]//ICLR. 4th International Conference on Learning Representations. La Jolla: ICLR, 2016: 1-13.
|
[38] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[C]//ICLR. 3rd International Conference on Learning Representations. La Jolla: ICLR, 2015: 1-14.
|
[39] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. doi: 10.1109/TPAMI.2017.2699184
|
[40] |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. ArXiv E-Print, 2017, DOI: arXiv:1706.05587.
|
[41] |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Springer. 15th European Conference on Computer Vision. Berlin: Springer, 2018: 833-851.
|
[42] |
KAIMING H, GEORGIA G, PIOTR D, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397. doi: 10.1109/TPAMI.2018.2844175
|
[43] |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
[44] |
LIU Shu, QI Lu, QIN Hai-fang, et al. Path aggregation network for instance segmentation[C]//IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 8759-8768.
|
[45] |
HUANG Zhao-jin, HUANG Li-chao, GONG Yong-chao, et al. Mask scoring R-CNN[C]//IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 6402-6411.
|
[46] |
SARIGUL M, OZYILDIRIM B M, AVCI M. Differential convolutional neural network[J]. Neural Networks, 2019, 116: 279-287. doi: 10.1016/j.neunet.2019.04.025
|
[47] |
ZEILER M D, FERGUS R. Stochastic pooling for regularization of deep convolutional neural networks[C]//ICLR. 1st International Conference on Learning Representations. La Jolla: ICLR, 2013: 1-9.
|
[48] |
FEI Jian-chao, FANG Hu-sheng, YIN Qin, et al. Restricted stochastic pooling for convolutional neural network[C]//ACM. 10th International Conference on Internet Multimedia Computing and Service. New York: ACM, 2018: 1-4.
|
[49] |
AKHTAR N, RAGAVENDRAN U. Interpretation of intelligence in CNN-pooling processes: a methodological survey[J]. Neural Computing and Application, 2020, 32(3): 879-898. doi: 10.1007/s00521-019-04296-5
|
[50] |
YU D, WANG H, CHEN P, et al. Mixed pooling for convolutional neural networks[C]//Springer. 9th International Conference on Rough Sets and Knowledge Technology. Berlin: Springer, 2014: 364-375.
|
[51] |
LIN Min, CHEN Qiang, YAN Shui-cheng. Network in network[C]//ICLR. 2nd International Conference on Learning Representations. La Jolla: ICLR, 2014: 1-10.
|
[52] |
SUN Man-li, SONG Zhan-jie, JIANG Xiao-heng, et al. Learning pooling for convolutional neural network[J]. Neurocomputing, 2017, 224: 96-104. doi: 10.1016/j.neucom.2016.10.049
|
[53] |
HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
|
[54] |
CUI Yin, ZHOU Feng, WANG Jiang, et al. Kernel pooling for convolutional neural networks[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 3049-3058.
|
[55] |
CHEN Jun-feng, HUA Zhou-dong, WANG Jing-yu, et al. A convolutional neural network with dynamic correlation pooling[C]//IEEE. 13th International Conference on Computational Intelligence and Security (CIS). New York: IEEE, 2017: 496-499.
|
[56] |
ZHAO Qi, LYU Shu-chang, ZHANG Bo-xue, et al. Multiactivation pooling method in convolutional neural networks for image recognition[J]. Wireless Communications and Mobile Computing, 2018, 2018: 8196906. doi: 10.1155/2018/8196906
|
[57] |
ZHANG Jian-ming, HUANG Qian-qian, WU Hong-lin, et al. A shallow network with combined pooling for fast traffic sign recognition[J]. Information, 2017, 8(2): 45. doi: 10.3390/info8020045
|
[58] |
SAEEDAN F, WEBER N, GOESELE M, et al. Detail- preserving pooling in deep networks[C]//IEEE. 2018 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 9108-9116.
|
[59] |
QI Kun-lun, GUAN Qing-feng, YANG Chao, et al. Concentric circle pooling in deep convolutional networks for remote sensing scene classification[J]. Remote Sensing, 2018, 10(6): 934. doi: 10.3390/rs10060934
|
[60] |
LONG Yang, ZHU Fan, SHAO Ling, et al. Face recognition with a small occluded training set using spatial and statistical pooling[J]. Information Sciences, 2018, 430/431: 634-644. doi: 10.1016/j.ins.2017.10.042
|
[61] |
WANG Feng, HUANG Si-wei, SHI Lei, et al. The application of series multi-pooling convolutional neural networks for medical image segmentation[J]. International Journal of Distributed Sensor Networks, 2017, 13(12): 1-10. http://www.researchgate.net/publication/322033622_The_application_of_series_multi-pooling_convolutional_neural_networks_for_medical_image_segmentation
|
[62] |
ZHI Tian-cheng, DUAN Ling-yu, WANG Yi-tong, et al. Two-stage pooling of deep convolutional features for image retrieval[C]//IEEE. 23rd IEEE International Conference on Image Processing. New York: IEEE, 2016: 2465-2469.
|
[63] |
SADIGH S, SEN P. Improving the resolution of CNN feature maps efficiently with multisampling[J]. ArXiv E-Print, 2018, DOI: arXiv:1805.10766.
|
[64] |
TAKEKI A, IKAMI D, IRIE G, et al. Parallel grid pooling for data augmentation[J]. ArXiv E-Print, 2018, DOI: arXiv:1803.11370.
|
[65] |
SHAHRIARI A, PORIKLI F. Multipartite pooling for deep convolutional neural networks[J]. ArXiv E-Print, 2017, DOI: arXiv:1710.07435.
|
[66] |
KUMAR A. Ordinal pooling networks: for preserving information over shrinking feature maps[J]. ArXiv E-Print, 2018, DOI: arXiv:1804.02702.
|
[67] |
KOLESNIKOV A, LAMPERT C H. Seed, expand and constrain: three principles for weakly- supervised image segmentation[C]// Springer. 21st ACM Conference on Computer and Communications Security. Berlin: Springer, 2016: 695-711.
|
[68] |
SHI Zeng-lin, YE Yang-ding, WU Yun-peng. Rank-based pooling for deep convolutional neural networks[J]. Neural Networks, 2016, 83: 21-31. doi: 10.1016/j.neunet.2016.07.003
|
[69] |
ZHAI Shuang-fei, WU Hui, KUMAR A, et al. S3Pool: pooling with stochastic spatial sampling[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 4003-4011.
|
[70] |
TONG Zhi-qiang, AIHARA K, TANAKA G. A hybrid pooling method for convolutional neural networks[C]//Springer. International Conference on Neural Information Processing. Berlin: Springer, 2016: 454-461.
|
[71] |
TURAGA S C, MURRAY J F, JAIN V, et al. Convolutional networks can learn to generate affinity graphs for image segmentation[J]. Neural Computation, 2010, 22(2): 511-538. doi: 10.1162/neco.2009.10-08-881
|
[72] |
WU Hai-bing, GU Xiao-dong. Max-pooling dropout for regularization of convolutional neural networks[C]//Springer. 22nd International Conference on Neural Information Processing. Berlin: Springer, 2015: 46-54.
|
[73] |
SONG Zhen-hua, LIU Yan, SONG Rong, et al. A sparsity-based stochastic pooling mechanism for deep convolutional neural networks[J]. Neural Networks, 2018, 105: 340-345. doi: 10.1016/j.neunet.2018.05.015
|
[74] |
WANG P, LI W, GAO Z, et al. Depth pooling based large-scale 3D action recognition with convolutional neural networks[J]. IEEE Transactions on Multimedia, 2018, 20(5): 1051-1061. doi: 10.1109/TMM.2018.2818329
|
[75] |
RIPPEL O, SNOEK J, ADAMS R P. Spectral representations for convolutional neural networks[C]//NeurIPS. 29th Annual Conference on Neural Information Processing Systems. San Diego: NeurIPS, 2015: 2449-2457.
|
[76] |
WILLIAMS T, LI R. Wavelet pooling for convolutional neural networks[C]//ICLR. 6th International Conference on Learning Representations. La Jolla: ICLR, 2018: 1-12.
|
[77] |
SAINATH T N, KINGSBURY B, MOHAMED A R, et al. Improvements to deep convolutional neural networks for LVCSR[C]//IEEE. 2013 IEEE Workshop on Automatic Speech Recognition and Understanding. New York: IEEE, 2013: 315-320.
|
[78] |
白琮, 黄玲, 陈佳楠, 等. 面向大规模图像分类的深度卷积神经网络优化[J]. 软件学报, 2018, 29(4): 1029-1038. https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201804012.htm
BAI Cong, HUANG Ling, CHEN Jia-nan, et al. Optimization of deep convolutional neural network for large scale image classification[J]. Journal of Software, 2018, 29(4): 1029-1038. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201804012.htm
|
[79] |
EOM H, CHOI H. Alpha—integration pooling for convolutional neural networks[J]. ArXiv E-Print, 2018, DOI: arXiv:1811.03436.
|
[80] |
刘万军, 梁雪剑, 曲海成. 不同池化模型的卷积神经网络学习性能研究[J]. 中国图象图形学报, 2016, 21(9): 1178-1190. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201609007.htm
LIU Wan-jun, LIANG Xue-jian, QU Hai-cheng. Learning performance of convolutional neural networks with different pooling models[J]. Journal of Image and Graphics, 2016, 21(9): 1178-1190. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201609007.htm
|
[81] |
ZHANG Bo-xue, ZHAO Qi, FENG Wen-quan, et al. AlphaMEX: a smarter global pooling method for convolutional neural networks[J]. Neurocomputing, 2018, 321: 36-48. doi: 10.1016/j.neucom.2018.07.079
|
[82] |
JOSE A, LOPEZ R D, HEISTERKLAUS I, et al. Pyramid pooling of convolutional feature maps for image retrieval[C]//IEEE. 25th IEEE International Conference on Image Processing. New York: IEEE, 2018: 480-484.
|
[83] |
WAIBEL A, HANAZAWA T, HINTON G, et al. Phoneme recognition using time-delay neural networks[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(3): 328-339. doi: 10.1109/29.21701
|
[84] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
|
[85] |
WANG Ze-long, LAN Qiang, HUANG Da-fei, et al. Combining FFT and spectral-pooling for efficient convolution neural network model[C]//Advances in Intelligent Systems Research. 2nd International Conference on Artificial Intelligence and Industrial Engineering. Paris: Atlantis Press, 2016: 203-206.
|
[86] |
SMITH J S, WILAMOWSKI B M. Discrete cosine transform spectral pooling layers for convolutional neural networks[C]//Springer. 17th International Conference on Artificial Intelligence and Soft Computing. Berlin: Springer, 2018: 235-246.
|
[87] |
NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]//ICML. 27th International Conference on Machine Learning. San Diego: ICML, 2010: 807-814.
|
[88] |
GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[J]. Journal of Machine Learning Research, 2011, 15: 315-323. http://www.researchgate.net/publication/319770387_Deep_Sparse_Rectifier_Neural_Networks
|
[89] |
LI Y, DING P, LI B. Training neural networks by using power linear units (PoLUs)[J]. ArXiv E-Print, 2018, DOI: arXiv:1802.00212.
|
[90] |
DOLEZEL P, SKRABABEK P, GAGO L. Weight initialization possibilities for feed forward neural network with linear saturated activation functions[J]. IFAC—Papers on Line, 2016, 49(25): 49-54. http://www.sciencedirect.com/science/article/pii/S2405896316326453
|
[91] |
GOODFELLOW I J, WARDE-FARLEY D, MIRZA M, et al. Maxout networks[C]//ICML. 30th International Conference on Machine Learning. San Diego: ICML, 2013: 2356-2364.
|
[92] |
CASTANEDA G, MORRIS P, KHOSHGOFTAAR T M. Evaluation of maxout activations in deep learning across several big data domains[J]. Journal of Big Data, 2019, DOI: 10.1186/s40537-019-0233-0.
|
[93] |
CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by exponential linear units (ELUs)[C]//ICLR. 4th International Conference on Learning Representations. La Jolla: ICLR, 2016: 1-14.
|
[94] |
MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//ACM. 30th International Conference on Machine Learning. New York: ACM, 2013: 456-462.
|
[95] |
HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]//IEEE. 15th IEEE International Conference on Computer Vision. New York: IEEE, 2015: 1026-1034.
|
[96] |
KLAMBAUER G, UNTERTHINER T, MAYR A, et al. Self-normalizing neural networks[C]//NeurIPS. 31st Annual Conference on Neural Information Processing Systems. San Diego: NeurIPS, 2017: 972-981.
|
[97] |
杨观赐, 杨静, 李少波, 等. 基于Dopout与ADAM优化器的改进CNN算法[J]. 华中科技大学学报(自然科学版), 2018, 46(7): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201807023.htm
YANG Guan-ci, YANG Jing, LI Shao-bo, et al. Modified CNN algorithm based on Dropout and ADAM optimizer[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(7): 122-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201807023.htm
|
[98] |
KINGMA D P, BA J L. Adam: a method for stochastic optimization[C]//ICLR. 3rd International Conference on Learning Representations. La Jolla: ICLR, 2015: 1-15.
|
[99] |
ROBBINS H, MONRO S. A stochastic approximation method[J]. The Annals of Mathematical Statistics, 1951, 22(3): 400-407. doi: 10.1214/aoms/1177729586
|
[100] |
石琪. 基于卷积神经网络图像分类优化算法的研究与验证[D]. 北京: 北京交通大学, 2017.
SHI Qi. Research and verification of image classification optimization algorithm based on convolutional neural network[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese)
|
[101] |
王红霞, 周家奇, 辜承昊, 等. 用于图像分类的卷积神经网络中激活函数的设计[J]. 浙江大学学报(工学版), 2019, 53(7): 1363-1373. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201907016.htm
WANG Hong-xia, ZHOU Jia-qi, GU Cheng-hao, et al. Design of activation function in CNN for image classification[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(7): 1363-1373. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201907016.htm
|
[102] |
POLYAK B T. Some methods of speeding up the convergence of iteration methods[J]. USSR Computational Mathematics and Mathematical Physics, 1964, 4(5): 1-17. doi: 10.1016/0041-5553(64)90137-5
|
[103] |
SUTSKEVER I, MARTENS J, DAHL G, et al. On the importance of initialization and momentum in deep learning[C]// ACM. 30th International Conference on Machine Learning. New York: ACM, 2013: 2176-2184.
|
[104] |
DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12: 2121-2159. http://web.stanford.edu/~jduchi/projects/DuchiHaSi10.html
|
[105] |
ZEILER M D. Adadelta: an adaptive learning rate method[J]. ArXiv E-Print, 2012, DOI: arXiv:1212.5701.
|
[106] |
JI Shi-hao, VISHWANATHAN S V N, SATISH N, et al. BlackOut: speeding up recurrent neural network language models with very large vocabularies[C]//ICLR. 4th International Conference on Learning Representations. La Jolla: ICLR, 2016: 1-4.
|
[107] |
LOUIZOS C, WELLING M, KINGMA D P. Learning sparse neural networks through L0 regularization[C]//ICLR. 6th International Conference on Learning Representations. La Jolla: ICLR, 2018: 1-13.
|
[108] |
DOZAT T. Incorporating nesterov momentum into adam[C]//ICLR. 4th International Conference on Learning Representations. La Jolla: ICLR, 2016: 1-4.
|
[109] |
LUO Liang-chao, XIONG Yuan-hao, LIU Yan, et al. Adaptive gradient methods with dynamic bound of learning rate[C]//ICLR. 7th International Conference on Learning Representations. La Jolla: ICLR, 2019: 1-19.
|
[110] |
WANG Di, TIAN Yu-min, GENG Wen-hui, et al. LPR-Net: recognizing Chinese license plate in complex environments[J]. Pattern Recognition Letters, 2020, 130: 148-156. doi: 10.1016/j.patrec.2018.09.026
|
[111] |
李祥鹏, 闵卫东, 韩清, 等. 基于深度学习的车牌定位和识别方法[J]. 计算机辅助设计与图形学学报, 2019, 31(6): 979-987. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201906014.htm
LI Xiang-peng, MIN Wei-dong, HAN Qing, et al. License plate location and recognition based on deep learning[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(6): 979-987. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201906014.htm
|
[112] |
LIN Hui, WANG Peng, YOU Chun-hua, et al. Reading car license plates using deep neural networks[J]. Image and Vision Computing, 2018, 72: 14-23. doi: 10.1016/j.imavis.2018.02.002
|
[113] |
XIANG Han, ZHAO Yong, YUAN Yu-le, et al. Lightweight fully convolutional network for license plate detection[J]. Optik, 2019, 178: 1185-1194. doi: 10.1016/j.ijleo.2018.10.098
|
[114] |
ASIF M R, QI Chun, WANG Tie-xiang, et al. License plate detection for multi-national vehicles: an illumination invariant approach in multi-lane environment[J]. Computers and Electrical Engineering, 2019, 78: 132-147. doi: 10.1016/j.compeleceng.2019.07.012
|
[115] |
PUARUNGROJ W, BOONSIRISUMPUN N. Thai license plate recognition based on deep learning[J]. Procedia Computer Science, 2018, 135: 214-221. doi: 10.1016/j.procs.2018.08.168
|
[116] |
CAO Yu, FU Hui-yuan, MA Hua-dong. An end-to-end neural network for multi-line license plate recognition[C]//IEEE. 24th International Conference on Pattern Recognition. New York: IEEE, 2018: 3698-3703.
|
[117] |
赵汉理, 刘俊如, 姜磊, 等. 基于卷积神经网络的双行车牌分割算法[J]. 计算机辅助设计与图形学学报, 2019, 31(8): 1320-1329. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201908007.htm
ZHAO Han-li, LIU Jun-ru, JIANG Lei, et al. Double-row license plate segmentation with convolutional neural networks[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(8): 1320-1329. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201908007.htm
|
[118] |
张秀玲, 张逞逞, 周凯旋. 基于感兴趣区域的CNN-Squeeze交通标志图像识别[J]. 交通运输系统工程与信息, 2019, 19(3): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201903008.htm
ZHANG Xiu-ling, ZHANG Cheng-cheng, ZHOU Kai-xuan. Traffic sign image recognition via CNN-Squeeze based on region of interest[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(3): 48-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201903008.htm
|
[119] |
王方石, 王坚, 李兵, 等. 基于深度属性学习的交通标志检测[J]. 吉林大学学报(工学版), 2018, 48(1): 319-329. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201801039.htm
WANG Fang-shi, WANG Jian, LI Bing, et al. Deep attribute learning based traffic sign detection[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(1): 319-329. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201801039.htm
|
[120] |
李旭东, 张建明, 谢志鹏, 等. 基于三尺度嵌套残差结构的交通标志快速检测算法[J]. 计算机研究与发展, 2020, 57(5): 1022-1036. https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ202005011.htm
LI Xu-dong, ZHANG Jian-ming, XIE Zhi-peng, et al. A fast traffic sign detection algorithm based on three-scale nested residual structures[J]. Journal of Computer Research and Development, 2020, 57(5): 1022-1036. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ202005011.htm
|
[121] |
宋青松, 张超, 田正鑫, 等. 基于多尺度卷积神经网络的交通标志识别[J]. 湖南大学学报(自然科学版), 2018, 45(8): 131-137. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201808018.htm
SONG Qing-song, ZHANG Chao, TIAN Zheng-xin, et al. Traffic sign recognition based on multi-scale convolutional neural network[J]. Journal of Hunan University (Natural Sciences), 2018, 45(8): 131-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201808018.htm
|
[122] |
孙伟, 杜宏吉, 张小瑞, 等. 基于CNN多层特征和ELM的交通标志识别[J]. 电子科技大学学报, 2018, 47(3): 343-349. doi: 10.3969/j.issn.1001-0548.2018.03.004
SUN Wei, DU Hong-ji, ZHANG Xiao-rui. et al. Traffic sign recognition method based on multi-layer feature CNN and extreme learning machine[J]. Journal of University of Electronic Science and Technology of China, 2018, 47(3): 343-349. (in Chinese) doi: 10.3969/j.issn.1001-0548.2018.03.004
|
[123] |
张淑芳, 朱彤. 基于残差单发多框检测器模型的交通标志检测与识别[J]. 浙江大学学报(工学版), 2019, 53(5): 940-949. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201905015.htm
ZHANG Shu-fang, ZHU Tong. Traffic sign detection and recognition based on residual single shot multibox detector model[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(5): 940-949. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201905015.htm
|
[124] |
LIU Zhi-gang, LI Dong-yu, GE Shu-zhi, et al. Small traffic sign detection from large image[J]. Applied Intelligence, 2020, 50(1): 1-13. doi: 10.1007/s10489-019-01511-7
|
[125] |
张建明, 王伟, 陆朝铨, 等. 基于压缩卷积神经网络的交通标志分类算法[J]. 华中科技大学学报(自然科学版), 2019, 47(1): 103-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201901019.htm
ZHANG Jian-ming, WANG Wei, LU Chao-quan, et al. Traffic sign classification algorithm based on compressed convolutional neural network[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2019, 47(1): 103-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201901019.htm
|
[126] |
SONG Shi-jin, QUE Zhi-qiang, HOU Jun-jie, et al. An efficient convolutional neural network for small traffic sign detection[J]. Journal of Systems Architecture, 2019, 97: 269-277. doi: 10.1016/j.sysarc.2019.01.012
|
[127] |
ZHANG Qiang, ZHOU Li, LI Jia-feng, et al. Vehicle color recognition using multiple-layer feature representations of lightweight convolutional neural network[J]. Signal Processing, 2018, 147(7): 146-153. http://smartsearch.nstl.gov.cn/paper_detail.html?id=c838aa91d4c92e3df3fe0f0f55425b12
|
[128] |
FU Hui-yuan, MA Hua-dong, WANG Gao-ya, et al. MCFF-CNN: multiscale comprehensive feature fusion convolutional neural network for vehicle color recognition based on residual learning[J]. Neurocomputing, 2020, 395: 178-187. doi: 10.1016/j.neucom.2018.02.111
|
[129] |
LI Su-hao, LIN Jin-zhao, LI Guo-quan, et al. Vehicle type detection based on deep learning in traffic scene[J]. Procedia Computer Science, 2018, 131: 564-572. doi: 10.1016/j.procs.2018.04.281
|
[130] |
HU Bin, LAI Jian-huang, GUO Chun-chao. Location-aware fine-grained vehicle type recognition using multi-task deep networks[J]. Neurocomputing, 2017, 243: 60-68. doi: 10.1016/j.neucom.2017.02.085
|
[131] |
XIANG Ye, FU Ying, HUANG Hua. Global relative position space based pooling for fine-grained vehicle recognition[J]. Neurocomputing, 2019, 367: 287-298. doi: 10.1016/j.neucom.2019.07.098
|
[132] |
余烨, 傅云翔, 杨昌东, 等. 基于FR-ResNet的车辆型号精细识别研究[J]. 自动化学报, 2021, 47(5): 1125-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202105014.htm
YU Ye, FU Yun-xiang, YANG Chang-dong, et al. Fine-grained car model recognition based on FR-ResNet[J]. Acta Automatica Sinica, 2021, 47(5): 1125-1136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202105014.htm
|
[133] |
杨娟, 曹浩宇, 汪荣贵, 等. 基于语义DCNN特征融合的细粒度车型识别模型[J]. 计算机辅助设计与图形学学报, 2019, 31(1): 141-157. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201901018.htm
YANG Juan, CAO Hao-yu, WANG Rong-gui, et al. Fine-grained car recognition model based on semantic DCNN features fusion[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(1): 141-157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201901018.htm
|
[134] |
蒋行国, 万今朝, 蔡晓东, 等. 奇异值分解与中心度量的细粒度车型识别算法[J]. 西安电子科技大学学报, 2019, 46(3): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD201903019.htm
JIANG Xing-guo, WAN Jin-zhao, CAI Xiao-dong, et al. Algorithm for identification of fine-grained vehicles based on singular value decomposition and central metric[J]. Journal of Xidian University, 2019, 46(3): 82-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD201903019.htm
|
[135] |
杨娟, 曹浩宇, 汪荣贵, 等. 区域建议网络的细粒度车型识别[J]. 中国图象图形学报, 2018, 23(6): 837-845. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201806006.htm
YANG Juan, CAO Hao-yu, WANG Rong-gui, et al. Fine-grained car recognition method based on region proposal networks[J]. Journal of Image and Graphics, 2018, 23(6): 837-845. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201806006.htm
|
[136] |
罗文慧, 董宝田, 王泽胜. 基于CNN-SVR混合深度学习模型的短时交通流预测[J]. 交通运输系统工程与信息, 2017, 17(5): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201705010.htm
LUO Wen-hui, DONG Bao-tian, WANG Ze-sheng. Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(5): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201705010.htm
|
[137] |
石敏, 蔡少委, 易清明. 基于空洞-稠密网络的交通拥堵预测模型[J]. 上海交通大学学报, 2021, 55(2): 124-130. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT202102003.htm
SHI Min, CAI Shao-wei, YI Qing-ming. A traffic congestion prediction model based on dilated-dense network[J]. Journal of Shanghai Jiaotong University, 2021, 55(2): 124-130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT202102003.htm
|
[138] |
DENG Shao-jiang, JIA Shu-yuan, CHEN Jing. Exploring spatial-temporal relations via deep convolutional neural networks for traffic flow prediction with incomplete data[J]. Applied Soft Computing Journal, 2019, 78: 712-721. doi: 10.1016/j.asoc.2018.09.040
|
[139] |
AN Ji-yao, FU Li, HU Meng, et al. A novel fuzzy-based convolutional neural network method to traffic flow prediction with uncertain traffic accident information[J]. IEEE Access, 2018, 12: 2169-3536. http://ieeexplore.ieee.org/document/8639012/
|
[140] |
HAN Dong-xiao, CHEN Juan, SUN Jian. A parallel spatiotemporal deep learning network for highway traffic flow forecasting[J]. International Journal of Distributed Sensor Networks, 2019, 15(2): 1-12. http://www.researchgate.net/publication/331379923_A_parallel_spatiotemporal_deep_learning_network_for_highway_traffic_flow_forecasting
|
[141] |
ZHANG Wei-bin, YU Ying-hao, QI Yong, et al. Short-term traffic flow prediction based on spatio-temporal analysis and CNN deep learning[J]. Transportmetrica A: Transport Science, 2019, 15(2): 1688-1711. doi: 10.1080/23249935.2019.1637966
|
[142] |
GUO Sheng-nan, LIN You-fang, FENG Ning, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//AAAI. 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2019: 922-929.
|
[143] |
WU Yuan-kai, TAN Hua-chun, QIN Ling-qiao, et al. A hybrid deep learning based traffic flow prediction method and its understanding[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 166-180. http://smartsearch.nstl.gov.cn/paper_detail.html?id=d7a038c4f0d3776bcead726010596c60
|
[144] |
赵海涛, 程慧玲, 丁仪, 等. 基于深度学习的车联边缘网络交通事故风险预测算法研究[J]. 电子与信息学报, 2020, 42(1): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202001006.htm
ZHAO Hai-tao, CHENG Hui-ling, DING Yi, et al. Research on traffic accident risk prediction algorithm of edge internet of vehicles based on deep learning[J]. Journal of Electronics and Information Technology, 2020, 42(1): 50-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202001006.htm
|
[145] |
朱虎明, 李佩, 焦李成, 等. 深度神经网络并行化研究综述[J]. 计算机学报, 2018, 41(8): 1861-1881. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201808011.htm
ZHU Hu-ming, LI Pei, JIAO Li-cheng, et al. Review of parallel deep neural network[J]. Chinese Journal of Computers, 2018, 41(8): 1861-1881. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201808011.htm
|
[146] |
CHETLUR S, WOOLLEY C, VANDERMERSCH P, et al. cuDNN: efficient primitives for deep learning[J]. arXiv e-Print, 2012, DOI: arXiv:1410.0759.
|