Citation: | SONG Chao-jie, ZHANG Gang, HE Shuan-hai, KODUR V K, HUANG Qiao, LI Xu-yang. Fire resistance performance and design method of steel-concretecomposite continuous curved box girders[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 139-149. doi: 10.19818/j.cnki.1671-1637.2021.04.010 |
[1] |
GARLOCK M, PAYA-ZAFORTEZA I, KODUR V K, et al. Fire hazard in bridges: review, assessment and repair strategies[J]. Engineering Structures, 2012, 35: 89-98. doi: 10.1016/j.engstruct.2011.11.002
|
[2] |
SONG Chao-jie, ZHANG Gang, HOU Wei, et al. Performance of prestressed concrete box bridge girders under hydrocarbon fire exposure[J]. Advances in Structural Engineering, 2020, 23(8): 1521-1533. doi: 10.1177/1369433219898102
|
[3] |
PERIS-SAYOL G, PAYA-ZAFORTEZA I, ALOS-MOYA J, et al. Analysis of the influence of geometric, modeling and environmental parameters on the fire response of steel bridges subjected to realistic fire scenarios[J]. Computers and Structures, 2015, 158: 333-345. doi: 10.1016/j.compstruc.2015.06.003
|
[4] |
张岗, 贺拴海, 侯炜, 等. 预应力混凝土桥梁抗火研究综述[J]. 长安大学学报(自然科学版), 2018, 38(6): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201806002.htm
ZHANG Gang, HE Shuan-hai, HOU Wei, et al. Review on fire resistance of prestressed-concrete bridge[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(6): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201806002.htm
|
[5] |
李国强, 王卫永. 钢结构抗火安全研究现状与发展趋势[J]. 土木工程学报, 2017, 50(12): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201712002.htm
LI Guo-qiang, WANG Wei-yong. State-of-the-art and development trend of fire safety research on steel structures[J]. China Civil Engineering Journal, 2017, 50(12): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201712002.htm
|
[6] |
秦智源, 张岗, 王高峰, 等. 油罐车火灾下钢-混组合连续箱梁性能及失效机理研究[J]. 长安大学学报(自然科学版), 2018, 38(6): 98-108. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201806012.htm
QIN Zhi-yuan, ZHANG Gang, WANG Gao-feng, et al. Performance failure of steel-concrete composite continuous box girder exposed to tanker fire[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(6): 98-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201806012.htm
|
[7] |
张岗, 宗如欢, 黄侨, 等. 油罐车火灾致简支钢-混组合箱梁抗弯承载力衰变机理[J]. 长安大学学报(自然科学版), 2018, 38(6): 31-39. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201806005.htm
ZHANG Gang, ZONG Ru-huan, HUANG Qiao, et al. Degradation mechanism of simply supported steel-concrete composite box girder under tanker fire condition[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(6): 31-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201806005.htm
|
[8] |
宋超杰, 张岗, 秦智源, 等. 钢板组合连续桥梁的耐火极限[J]. 长安大学学报(自然科学版), 2019, 39(6): 89-98. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201906011.htm
SONG Chao-jie, ZHANG Gang, QIN Zhi-yuan, et al. Fire resistance of steel-concrete composite continuous bridge girder[J]. Journal of Chang'an University (Natural Science Edition), 2019, 39(6): 89-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201906011.htm
|
[9] |
康俊涛, 王伟. 火灾下大跨度钢桁架拱桥结构性能分析[J]. 哈尔滨工业大学学报, 2020, 52(9): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202009012.htm
KANG Jun-tao, WANG Wei. Analysis of structural performance of long-span steel trussed arch bridge exposed to fire[J]. Journal of Harbin Institute of Technology, 2020, 52(9): 77-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202009012.htm
|
[10] |
陈适才, 张磊, 张洋, 等. 局部火灾引起的整体钢结构初始破坏机理与倒塌机制[J]. 建筑结构学报, 2015, 36(2): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201502015.htm
CHEN Shi-cai, ZHANG Lei, ZHANG Yang, et al. Initial failure and collapse mechanism of steel frame structures under localized fire[J]. Journal of Building Structures, 2015, 36(2): 115-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201502015.htm
|
[11] |
NASER M Z, KODUR V K. Comparative fire behavior of composite girders under flexural and shear loading[J]. Thin-Walled Structures, 2017, 116: 82-90. http://www.sciencedirect.com/science/article/pii/S0263823117302537
|
[12] |
ALOS-MOYA J, PAYA-ZAFORTEZA I, HOSPITALER A, et al. Valencia bridge fire tests: experimental study of a composite bridge under fire[J]. Journal of Constructional Steel Research, 2017, 138: 538-554. http://www.sciencedirect.com/science/article/pii/S0143974X17304881
|
[13] |
AZIZ E M, KODUR V K, GLASSMAN J D, et al. Behavior of steel bridge girders under fire conditions[J]. Journal of Constructional Steel Research, 2015, 106: 11-22. http://www.sciencedirect.com/science/article/pii/S0143974X14003253
|
[14] |
QUIEL S E, YOKOYAMA T, BREGMAN L S, et al. A streamlined framework for calculating the response of steel-supported bridges to open-air tanker truck fires[J]. Fire Safety Journal, 2015, 73: 63-75. http://www.sciencedirect.com/science/article/pii/S0379711215000405
|
[15] |
ALOS-MOYA J, PAYA-ZAFORTEZA I, GARLOCK M E M, et al. Analysis of a bridge failure due to fire using computational fluid dynamics and finite element models[J]. Engineering Structures, 2014, 68: 96-110. http://www.sciencedirect.com/science/article/pii/S0141029614001151
|
[16] |
ZHANG Gang, KODUR V K, SONG Chao-jie, et al. A numerical model for evaluating fire performance of composite box bridge girders[J]. Journal of Constructional Steel Research, 2020, 165: 105823. http://www.sciencedirect.com/science/article/pii/S0143974X1930759X
|
[17] |
NAHID M N, SOTELINO E D, LATTIMER B Y. Thermo-structural response of highway bridge structures with tub girders and plate girders[J]. Journal of Bridge Engineering, 2017, 22(10): 04017069. http://www.researchgate.net/publication/320150406_Thermo-Structural_Response_of_Highway_Bridge_Structures_with_Tub_Girders_and_Plate_Girders
|
[18] |
HOZJAN T, SAJE M, SRP I S, et al. Fire analysis of steel-concrete composite beam with interlayer slip[J]. Computers and Structures, 2011, 89(1/2): 189-200. http://www.sciencedirect.com/science/article/pii/S004579491000218X
|
[19] |
HU Jia-yu, USMANI A, SANAD A, et al. Fire resistance of composite steel and concrete highway bridges[J]. Journal of Constructional Steel Research, 2018, 148: 707-719. http://www.sciencedirect.com/science/article/pii/S0143974X1730771X
|
[20] |
周焕廷, 郑志远, 郝聪龙, 等. 预应力连续钢-混组合梁抗火性能[J]. 长安大学学报(自然科学版), 2018, 38(6): 40-48. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201806006.htm
ZHOU Huan-ting, ZHENG Zhi-yuan, HAO Cong-long, et al. Fire resistance of prestressed continuous steel-concrete composite beams[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(6): 40-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201806006.htm
|
[21] |
周焕廷, 聂河斌, 张健, 等. 预应力简支钢梁高温性能试验研究[J]. 中国公路学报, 2016, 29(8): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201608008.htm
ZHOU Huan-ting, NIE He-bin, ZHNAG Jian, et al. Experimental study on performance of simply supported prestressed steel beams at high temperature[J]. China Journal of Highway and Transport, 2016, 29(8): 59-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201608008.htm
|
[22] |
蒋翔, 童根树, 张磊. 耐火钢-混凝土简支组合梁抗火性能[J]. 哈尔滨工业大学学报, 2017, 49(12): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201712009.htm
JIANG Xiang, TONG Gen-shu, ZHNAG Lei. Fire-resistance performance of simply supported fire-resistant steel-concrete composite beams[J]. Journal of Harbin Institute of Technology, 2017, 49(12): 68-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201712009.htm
|
[23] |
ALBERO V, SAURA H, HOSPITALER A, et al. Optimal design of prestressed concrete hollow core slabs taking into account its fire resistance[J]. Advances in Engineering Software, 2018, 122: 81-92. http://www.sciencedirect.com/science/article/pii/S0965997818302163
|
[24] |
KODUR V K, AZIZ E M, NASER M Z. Strategies for enhancing fire performance of steel bridges[J]. Engineering Structures, 2017, 131: 446-458. http://www.sciencedirect.com/science/article/pii/S0141029616309956
|
[25] |
KODUR V K, NASER M Z. Designing steel bridges for fire safety[J]. Journal of Constructional Steel Research, 2019, 156: 46-53. http://www.sciencedirect.com/science/article/pii/S0143974X18305066
|
[26] |
DU Yong, SUN Ya-kai, JIANG Jian, et al. Effect of cavity radiation on transient temperature distribution in steel cables under ISO834 fire[J]. Fire Safety Journal, 2019, 104: 79-89. http://www.sciencedirect.com/science/article/pii/S0379711218302078
|
[27] |
KOTSOVINOS P, ATALIOTI A, MCSWINEY N, et al. Analysis of the thermomechanical response of structural cables subject to fire[J]. Fire Technology, 2020, 56(2): 515-543.
|
[28] |
刘永健, 刘江. 钢-混凝土组合梁桥温度作用与效应综述[J]. 交通运输工程学报, 2020, 20(1): 42-59. http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=202001003
LIU Yong-jian, LIU Jiang. Review on temperature action and effect of steel-concrete composite girder bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 42-59. (in Chinese) http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=202001003
|
[29] |
BS EN 1991-1-2, Eurocode 1—actions on structures—part 1-2: general actions—actions on structures exposed to fire[S].
|
[30] |
BS EN 1994-1-2, Eurocode 4—design of composite steel and concrete structures—part 1-2: general rules—structural fire design[S].
|
[31] |
WEI Ya, AU F T K, LI Jing, et al. Effects of transient creep strain on post-tensioned concrete slabs in fire[J]. Magazine of Concrete Research, 2017, 69(7): 337-346. http://www.researchgate.net/publication/293799451_Effects_of_transient_creep_strain_on_post-tensioned_concrete_slabs_in_fire
|