Citation: | YANG Bin, FENG Bo, LI Yi-fan, LIAO Zhen, ZHANG Ji-wang, XIAO Shou-ne, YANG Guang-wu, ZHU Tao. Influence of surface micro shot peening on short fatigue crack behavior of CuNi2Si alloy[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 163-171. doi: 10.19818/j.cnki.1671-1637.2021.04.012 |
[1] |
LEI Qian, XIAO Zhu, HU Wei-ping, et al. Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy[J]. Materials Science and Engineering: A, 2017, 697: 37-47. doi: 10.1016/j.msea.2017.05.001
|
[2] |
MONZEN R, WATANABE C. Microstructure and mechanical properties of Cu-Ni-Si alloys[J]. Materials Science and Engineering: A, 2008, 483/484: 117-119. doi: 10.1016/j.msea.2006.12.163
|
[3] |
LOCKYER S A, NOBLE F W. Fatigue of precipitate strengthened Cu-Ni-Si alloy[J]. Materials Science and Technology, 1999, 15(10): 1147-1153. doi: 10.1179/026708399101505194
|
[4] |
LEI Qian, LI Zhou, HAN Liang, et al. Effect of aging time on the corrosion behavior of a Cu-Ni-Si alloy in 3.5 wt% NaCl solution[J]. Corrosion Houston Tx, 2016, 72(5): 615-627. doi: 10.5006/1884
|
[5] |
TANG Xing-ying, WANG Shu-zhong, QIAN Li-li, et al. Corrosion behavior of nickel base alloys, stainless steel and titanium alloy in supercritical water containing chloride, phosphate and oxygen[J]. Chemical Engineering Research and Design, 2015, 100: 530-541. doi: 10.1016/j.cherd.2015.05.003
|
[6] |
ZHAO X H, HAN Y, BAI Z Q, et al. The experiment research of corrosion behaviour about Ni-based alloys in simulant solution containing H 2S/CO 2[J]. Electrochimica Acta, 2011, 56(22): 7725-7731. doi: 10.1016/j.electacta.2011.05.116
|
[7] |
杨留有, 邵建方, 杨庆和. 关于高铁接触网定位线夹脱落问题的分析及建议[J]. 铁道机车车辆, 2014, 34(3): 141-144. doi: 10.3969/j.issn.1008-7842.2014.03.35
YANG Liu-you, SHAO Jian-fang, YANG Qing-he. Analysis and recommendations for high-speed rail catenary positioning clamp shedding problem[J]. Railway Locomotive and CAR, 2014, 34(3): 141-144. (in Chinese) doi: 10.3969/j.issn.1008-7842.2014.03.35
|
[8] |
GŁUCHOWSKI W, RDZAWSKI Z, SOBOTA J, et al. Effect of the combined heat treatment and severe plastc deformation on the microstructure of CuNiSi alloy[J]. Archives of Metallurgy and Materials, 2016, 61(2): 1207-1214. doi: 10.1515/amm-2016-0200
|
[9] |
LEI Qian, LI Zhou, GAO Yang, et al. Microstructure and mechanical properties of a high strength Cu-Ni-Si alloy treated by combined aging processes[J]. Journal of Alloys and Compounds, 2017, 695: 2413-2423. doi: 10.1016/j.jallcom.2016.11.137
|
[10] |
TAN De-qiang, MO Ji-liang, PENG Jin-fang, et al. Research and prospect on high-speed catenary component failure[J]. Journal of Southwest Jiaotong University, 2018, 53(3): 610-619. http://www.researchgate.net/publication/327673361_Research_and_Prospect_on_High-Speed_Catenary_Component_Failure
|
[11] |
ATAPEK S H, PANTELAKIS S G, POLAT S. Fractographical analysis of fatigue failed Cu-2.55Ni-0.55Si alloy[J]. Theoretical and Applied Fracture Mechanics, 2016, 83: 60-66. doi: 10.1016/j.tafmec.2015.12.015
|
[12] |
SUN Z, LAITEM C, VINCENT A. Dynamic embrittlement during fatigue of a Cu-Ni-Si alloy[J]. Materials Science and Engineering: A, 2011, 528(19/20): 6334-6337. http://www.sciencedirect.com/science/article/pii/S0921509311005016
|
[13] |
LOCKYER S A, NOBLE F W. Fatigue of precipitate strengthened Cu-Ni-Si alloy[J]. Materials Science and Technology, 1999, 15(10): 1147-1153. doi: 10.1179/026708399101505194
|
[14] |
GOTO M, HAN S Z, LIM S H, et al. Role of microstructure on initiation and propagation of fatigue cracks in precipitate strengthened Cu-Ni-Si alloy[J]. International Journal of Fatigue, 2016, 87: 15-21. doi: 10.1016/j.ijfatigue.2016.01.004
|
[15] |
DELBOVE M, VOGT J B, BOUQUEREL J, et al. Low cycle fatigue behaviour of a precipitation hardened Cu-Ni-Si alloy[J]. International Journal of Fatigue, 2016, 92: 313-320. doi: 10.1016/j.ijfatigue.2016.07.019
|
[16] |
王华强, 吴明泽, 张继旺, 等. 预冷变形对Cu-Ni-Si铜合金疲劳性能和破坏行为影响研究[J]. 实验力学, 2018, 33(6): 877-884. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201806006.htm
WANG Hua-qiang, WU Ming-ze, ZHANG Ji-wang, et al. On the effect of precooling deformation on fatigue performance and failure behavior of Cu-Ni-Si alloy[J]. Journal of Experimental Mechanics, 2018, 33(6): 877-884. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201806006.htm
|
[17] |
YANG Bing, WU Ming-ze, LI Xing, et al. Effects of cold working and corrosion on fatigue properties and fracture behaviors of precipitate strengthened Cu-Ni-Si alloy[J]. International Journal of Fatigue, 2018, 116: 118-127. doi: 10.1016/j.ijfatigue.2018.06.017
|
[18] |
ZHANG Ji-wang, LI Xing, YANG Bing, et al. Effect of micro-shot peening on fatigue properties of precipitate strengthened Cu-Ni-Si alloy in air and in salt atmosphere[J]. Surface and Coatings Technology, 2019, 359: 16-23. doi: 10.1016/j.surfcoat.2018.12.035
|
[19] |
刘宇轩, 吴圣川, 李存海, 等. 轴箱内置型铁路车轴疲劳性能与寿命评估[J]. 交通运输工程学报, 2019, 19(3): 100-108. http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=201903011
LIU Yu-xuan, WU Sheng-chuan, LI Cun-hai, et al. Fatigue performance and life assessment of railway axle with inside axle box[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 100-108. (in Chinese) http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=201903011
|
[20] |
QIN Ya-hang, YANG Bing, FENG Bo, et al. Effect of periodic overloads on short fatigue crack behavior in CuNi 2Si alloy under rotating bending load[J]. Metals—Open Access Metallurgy Journal, 2020, 10(9): 1267. http://www.researchgate.net/publication/345245026_Effect_of_Periodic_Overloads_on_Short_Fatigue_Crack_Behavior_in_CuNi2Si_Alloy_under_Rotating_Bending_Load
|
[21] |
YANG Bing, LI Yi-fan, QIN Ya-hang, et al. Fatigue crack growth behavior of precipitate-strengthened CuNi 2Si alloy under different loading modes[J]. Materials, 2020, 2228(13): 1-14. http://www.researchgate.net/publication/341332619_Fatigue_Crack_Growth_Behaviour_of_Precipitate-Strengthened_CuNi2Si_Alloy_under_Different_Loading_Modes
|
[22] |
PANG H T, REED P A S. Effects of microstructure on room temperature fatigue crack initiation and short crack propagation in Udimet 720Li Ni-base superalloy[J]. International Journal of Fatigue, 2008, 30(10/11): 2009-2020. http://www.sciencedirect.com/science/article/pii/S0142112308000042
|
[23] |
YANG Bing, ZHAO Yong-xiang. Experimental research on dominant effective short fatigue crack behavior for railway LZ50 axle steel[J]. International Journal of Fatigue, 2012, 35(1): 71-78. doi: 10.1016/j.ijfatigue.2010.11.012
|
[24] |
杨冰, 廖贞, 马佰全, 等. 两种加载频率下LZ50车轴钢疲劳短裂纹行为对比[J]. 交通运输工程学报, 2017, 17(6): 46-55. http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=201706006
YANG Bing, LIAO Zhen, MA Bai-quan, et al. Comparison of short fatigue crack behaviors for LZ50 axle steel under two loading frequencies[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 46-55. (in Chinese) http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=201706006
|
[25] |
ZHAO Yong-xiang, YANG Bing, ZHANG Wei-hua. A short fatigue crack growth law for 1Cr18Ni9Ti weld metal[J]. Key Engineering Materials, 2006, 324/325: 571-578. doi: 10.4028/www.scientific.net/KEM.324-325.571
|
[26] |
张继旺, 鲁连涛, 张卫华. 微粒子喷丸中碳钢疲劳性能分析[J]. 金属学报, 2009, 45(11): 1378-1383. doi: 10.3321/j.issn:0412-1961.2009.11.017
ZHANG Ji-wang, LU Lian-tao, ZHANG Wei-hua. Analysis on fatigue property of microshot peened medium carbon steel[J]. Acta Metallurgica Sinica, 2009, 45(11): 1378-1383. (in Chinese) doi: 10.3321/j.issn:0412-1961.2009.11.017
|
[27] |
DENG Guo-jian, TU Shan-tung, ZHANG Xian-cheng, et al. Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169[J]. Engineering Fracture Mechanics, 2015, 134: 433-450. doi: 10.1016/j.engfracmech.2015.01.002
|
[28] |
MURAKAMI Y, ENDO M. Effects of defects, inclusions and inhomogeneities on fatigue strength[J]. International Journal of Fatigue, 1994, 16(3): 163-182. doi: 10.1016/0142-1123(94)90001-9
|
[29] |
LORENZINO P, BUFFIERE J Y, VERDU C. 3D characterization of the propagation of small fatigue cracks in steels with different forging conditions[J]. International Journal of Fatigue, 2018, 115: 2-10. doi: 10.1016/j.ijfatigue.2018.06.042
|
[30] |
ZHANG Ji-wang, LI Hang, YANG Bing, et al. Fatigue properties and fatigue strength evaluation of railway axle steel: effect of micro-shot peening and artificial defect[J]. International Journal of Fatigue, 2020, 132: 105379. doi: 10.1016/j.ijfatigue.2019.105379
|