Citation: | CHEN Hua-wei, SHAO Yi-ming, AO Gu-chang, ZHANG Hui-ling. Speed prediction by online map-based GCN-LSTM neural network[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 183-196. doi: 10.19818/j.cnki.1671-1637.2021.04.014 |
[1] |
张建旭, 郭力玮. 基于在线地图交通态势分析的路网拥堵状态识别[J]. 交通运输系统工程与信息, 2018, 18(5): 79-85. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201805012.htm
ZHANG Jian-xu, GUO Li-wei. Congestion status recognition of road network based on traffic situation analysis of online map[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(5): 79-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201805012.htm
|
[2] |
郭力玮. 基于在线地图数据挖掘的交通运行态势预测方法研究[D]. 重庆: 重庆交通大学, 2019.
GUO Li-wei. Research on traffic operation situation prediction method based on online map data mining[D]. Chongqing: Chongqing Jiaotong University, 2019. (in Chinese)
|
[3] |
陈华伟, 邵毅明, 敖谷昌, 等. 基于在线地图交通状态的关键道路动态识别方法[J]. 交通运输系统工程与信息, 2019, 19(5): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201905008.htm
CHEN Hua-wei, SHAO Yi-ming, AO Gu-chang, et al. Dynamic identification method of critical roads based on traffic state of online map[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(5): 50-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201905008.htm
|
[4] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444. doi: 10.1038/nature14539
|
[5] |
MA Xiao-lei, TAO Zhi-min, WANG Yin-hai, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 187-197. doi: 10.1016/j.trc.2015.03.014
|
[6] |
刘昶. 基于时间序列的经典模型和LSTM模型的城市宏观行程速度预测研究[D]. 北京: 北京交通大学, 2019.
LIU Chang. Research on urban macro travel speed prediction based on classical models and LSTM model in time series models[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
|
[7] |
陈凯勋. 基于注意力机制的短时交通流速度预测模型研究[D]. 广州: 华南理工大学, 2019.
CHEN Kai-xun. Study on short-term traffic flow velocity prediction model based on attention mechanism[D]. Guangzhou: South China University of Technology, 2019. (in Chinese)
|
[8] |
ZHAO Jian-dong, GAO Yuan, YANG Zhen-zhen, et al. Truck traffic speed prediction under non-recurrent congestion: based on optimized deep learning algorithms and GPS data[J]. IEEE Access, 2019, 7: 9116-9127. doi: 10.1109/ACCESS.2018.2890414
|
[9] |
JEONG M, LEE T, JEON S, et al. Highway speed prediction using gated recurrent unit neural networks[J]. Applied Sciences, 2021, 11(7): 3059-3073. doi: 10.3390/app11073059
|
[10] |
MA Xiao-lei, DAI Zhuang, HE Zheng-bing, et al. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4): 818-833. doi: 10.3390/s17040818
|
[11] |
LIU Qing-chao, WANG Bo-chen, ZHU Yu-quan. Short-term traffic speed forecasting based on attention convolutional neural network for arterials[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(11): 999-1016. doi: 10.1111/mice.12417
|
[12] |
WANG Jing-yuan, GU Qian, WU Jun-jie, et al. Traffic speed prediction and congestion source exploration: a deep learning method[C]//IEEE. International Conference on Data Mining. New York: IEEE, 2016: 499-508.
|
[13] |
JO D, YU B, JEON H, et al. Image-to-image learning to predict traffic speeds by considering area-wide spatio-temporal dependencies[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1188-1197. doi: 10.1109/TVT.2018.2885366
|
[14] |
唐克双, 陈思曲, 曹喻旻, 等. 基于Inception卷积神经网络的城市快速路行程速度短时预测[J]. 同济大学学报: 自然科学版, 2021, 49(3): 370-381. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202103009.htm
TANG Ke-shuang, CHEN Si-qu, CAO Yu-min, et al. Short-term travel speed prediction for urban expressways based on convolutional neural network with inception module[J]. Journal of Tongji University: Natural Science, 2021, 49(3): 370-381. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202103009.htm
|
[15] |
YU Hai-yang, WU Zhi-hai, WANG Shu-qin, et al. Spatio-temporal recurrent convolutional networks for traffic prediction in transportation networks[J]. Sensors, 2017, 17(7): 1501-1516. doi: 10.3390/s17071501
|
[16] |
ZANG Di, LING Jia-wei, WEI Zhi-hua, et al. Long-term traffic speed prediction based on multiscale spatio-temporal feature learning network[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3700-3709. doi: 10.1109/TITS.2018.2878068
|
[17] |
杨建喜, 郁超顺, 李韧, 等. 基于多周期组件时空神经网络的路网通行速度预测[J]. 交通运输系统工程与信息, 2021, 21(3): 112-119. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103014.htm
YANG Jian-xi, YU Chao-shun, LI Ren, et al. Traffic network speed prediction via multi-periodic-component spatial-temporal neural network[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 112-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103014.htm
|
[18] |
WANG Jia-wei, CHEN Rui-xiang, HE Zhao-cheng. Traffic speed prediction for urban transportation network: a path based deep learning approach[J]. Transportation Research Part C: Emerging Technologies, 2019, 100: 372-385. doi: 10.1016/j.trc.2019.02.002
|
[19] |
GU Yuan-li, LU Wen-qi, QIN Ling-qiao, et al. Short-term prediction of lane-level traffic speeds: a fusion deep learning model[J]. Transportation Research Part C: Emerging Technologies, 2019, 106: 1-16. doi: 10.1016/j.trc.2019.07.003
|
[20] |
LYU Zhong-jian, XU Jia-jie, ZHENG Kai, et al. LC-RNN: a deep learning model for traffic speed prediction[C]//IJCAI. International Joint Conference on Artificial Intelligence. Stockholm: IJCAI, 2018: 3470-3476.
|
[21] |
YU B, LEE Y, SOHN K. Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN)[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 189-204. doi: 10.1016/j.trc.2020.02.013
|
[22] |
GE Liang, LI Hang, LIU Jun-ling, et al. Temporal graph convolutional networks for traffic speed prediction considering external factors[C]//IEEE. International Conference on Mobile Data Management. New York: IEEE, 2019: 234-242.
|
[23] |
ZHANG Zheng-chao, LI Meng, LIN Xi, et al. Multistep speed prediction on traffic networks: a deep learning approach considering spatio-temporal dependencies[J]. Transportation Research Part C: Emerging Technologies, 2019, 105: 297-322. doi: 10.1016/j.trc.2019.05.039
|
[24] |
XIE Zhi-pu, LYU Wei-feng, HUANG Shang-fo, et al. Sequential graph neural network for urban road traffic speed prediction[J]. IEEE Access, 2019, 8: 63349-63358. http://ieeexplore.ieee.org/document/8708297
|
[25] |
LU Zhi-long, LYU Wei-feng, CAO Ya-bin, et al. LSTM variants meet graph neural networks for road speed prediction[J]. Neurocomputing, 2020, 400: 34-45. doi: 10.1016/j.neucom.2020.03.031
|
[26] |
DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//NIPS. International Conference on Neural Information Processing Systems. Barcelona: NIPS, 2016: 3844-3852.
|
[27] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
|
[28] |
苏飞, 董宏辉, 贾利民, 等. 基于时空相关性的城市交通路网关键路段识别[J]. 交通运输系统工程与信息, 2017, 17(3): 213-221. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201703032.htm
SU Fei, DONG Hong-hui, JIA Li-min, et al. Identification of critical section in urban traffic road network based on space-time correlation[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(3): 213-221. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201703032.htm
|
[29] |
LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code[J]. Neural Computation, 1989, 1(4): 541-551. doi: 10.1162/neco.1989.1.4.541
|
[30] |
HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(8): 2554-2561. doi: 10.1073/pnas.79.8.2554
|