Citation: | LIU Zhan-wen, FAN Song-hua, QI Ming-yuan, DONG Ming, WANG Pin, ZHAO Xiang-mo. Multi-task perception algorithm of autonomous driving based on temporal fusion[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 223-234. doi: 10.19818/j.cnki.1671-1637.2021.04.017 |
[1] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[C]//ICLR. 3rd International Conference on Learning Representations. San Diego: ICLR, 2015: 357-361.
|
[2] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. doi: 10.1109/TPAMI.2017.2699184
|
[3] |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. https://arxiv.org/abs/1706.05587, 2017-08-08/2017-12-05.
|
[4] |
CHEN L C, ZHU Yu-kun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Springer. 15th European Conference on Computer Vision. Berlin: Springer, 2018: 833-851.
|
[5] |
ZHAO Heng-shuang, SHI Jian-ping, QI Xiao-juan, et al. Pyramid scene parsing network[C]//IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 6230-6239.
|
[6] |
ZHAO Heng-shuang, QI Xiao-juan, SHEN Xiao-yong, et al. ICNet for real-time semantic segmentation on high-resolution images[C]//Springer. 15th European Conference on Computer Vision. Berlin: Springer, 2018: 418-434.
|
[7] |
LIU Zhan-wen, QI Ming-yuan, SHEN Chao, et al. Cascade saccade machine learning network with hierarchical classes for traffic sign detection[J]. Sustainable Cities and Society, 2021, 67: 30914-30928. http://www.sciencedirect.com/science/article/pii/S2210670720309148
|
[8] |
REN Shao-qing, HE Kai-ming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
[9] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 779-788.
|
[10] |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 6517-6525.
|
[11] |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767, 2018-04-08.
|
[12] |
LAW H, DENG Jia. CornerNet: detecting objects as paired keypoints[J]. International Journal of Computer Vision, 2020, 128(3): 642-656. doi: 10.1007/s11263-019-01204-1
|
[13] |
ZHOU Xing-yi, WANG De-quan, KRÄHENBVHL P. Objects as points[EB/OL]. https://arxiv.org/abs/1904.07850v1, 2019-04-16/2019-04-25.
|
[14] |
ZHAO Yi, QI Ming-yuan, LI Xiao-hui, et al. P-LPN: towards real time pedestrian location perception in complex driving scenes[J]. IEEE Access, 2020, 8: 54730-54740. doi: 10.1109/ACCESS.2020.2981821
|
[15] |
TEICHMANN M, WEBER M, ZÖLLNER M, et al. MultiNet: Real-time joint semantic reasoning for autonomous driving[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 1013-1020.
|
[16] |
SISTU G, LEANG I, YOGAMANI S. Real-time joint object detection and semantic segmentation network for automated driving[EB/OL]. https://arxiv.org/abs/1901.03912, 2019-06-12.
|
[17] |
CHEN Zhao, BADRINARAYANAN V, LEE C Y, et al. GradNorm: gradient normalization for adaptive loss balancing in deep multitask networks[C]//ICML. 35th International Conference on Machine Learning. Stockholm: ICML, 2018: 794-803.
|
[18] |
KENDALL A, GAL Y, CIPOLLA R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 7482-7491.
|
[19] |
SENER O, KOLTUN V. Multi-task learning as multi-objective optimization[C]//IFIP. 32nd International Conference on Neural Information Processing Systems. Rome: IFIP, 2017: 525-526.
|
[20] |
ZHAO Xiang-mo, QI Ming-yuan, LIU Zhan-wen, et al. End-to-end autonomous driving decision model joined by attention mechanism and spatiotemporal features[J]. IET Intelligent Transport Systems, 2021, 8: 1119-1130. http://www.researchgate.net/publication/352733796_End-to-end_autonomous_driving_decision_model_joined_by_attention_mechanism_and_spatiotemporal_features
|
[21] |
LI Yu-le, SHI Jian-ping, LIN Da-hua. Low-latency video semantic segmentation[C]//IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 5997-6005.
|
[22] |
FENG Jun-yi, LI Song-yuan, LI Xi, et al. TapLab: a fast framework for semantic video segmentation tapping into compressed-domain knowledge[J]. IEEE Transactions on Software Engineering, 2020, https://ieeexplore.ieee.org/document/9207876.
|
[23] |
WU Jun-rong, WEN Zong-zheng, ZHAO San-yuan, et al. Video semantic segmentation via feature propagation with holistic attention[J]. Pattern Recognition, 2020, 104, DOI: 10.1016/j.patcog.2020.107268.
|
[24] |
HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Identity mappings in deep residual networks[C]//ACM. 14th European Conference on 21st ACM Conference on Computer Vision. Berlin: Springer, 2016: 630-645.
|
[25] |
HU Ping, HEILBRON F C, WANG O, et al. Temporally distributed networks for fast video semantic segmentation[C]//IEEE. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 8815-8824.
|
[26] |
ZHU Zhen, XU Meng-du, BAI Song, et al. Asymmetric non-local neural networks for semantic segmentation[C]//IEEE. 2019 International Conference on Computer Vision. New York: IEEE, 2019: 593-602.
|
[27] |
CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 3213-3223.
|
[28] |
YUN S D, HAN D Y, OH S J, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]//IEEE. 2019 International Conference on Computer Vision. New York: IEEE, 2019: 6022-6031.
|
[29] |
HE Kai-ming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 386-397. doi: 10.1109/TPAMI.2018.2844175
|
[30] |
LI Yang-hao, CHEN Yun-tao, WANG Nai-yan, et al. Scale-aware trident networks for object detection[C]//IEEE. 2019 International Conference on Computer Vision. New York: IEEE, 2019: 6053-6062.
|
[31] |
ZHU Xi-zhou, XIONG Yu-wen, DAI Ji-feng, et al. Deep feature flow for video recognition[C]//IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 4141-4150.
|