Citation: | SONG Hong-yu, SHANGGUAN Wei, SHENG Zhao, ZHANG Rui-fen. Optimization method of dynamic trajectory for high-speed train group based on resilience adjustment[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 235-250. doi: 10.19818/j.cnki.1671-1637.2021.04.018 |
[1] |
ICHIKAWA K. Application of optimization theory for bounded state variable problems to the operation of train[J]. Bulletin of JSME, 1968, 11(47): 857-865. doi: 10.1299/jsme1958.11.857
|
[2] |
HOWLETT P. An optimal strategy for the control of a train[J]. Journal of Australian Mathematical Society Series, 1990, 31: 454-471. doi: 10.1017/S0334270000006780
|
[3] |
HOWLETT P G, CHENG J X. Optimal driving strategies for a train on a track with continuously varying gradient[J]. Journal of Australian Mathematical Society Series, 1997, 38: 388-410. doi: 10.1017/S0334270000000746
|
[4] |
ALBRECHTA R, HOWLETT P G, PUDNEY P J, et al. Energy-efficient train control: from local convexity to global optimization and uniqueness[J]. Automatica, 2013, 49(10): 3072-3078. doi: 10.1016/j.automatica.2013.07.008
|
[5] |
SCHEEPMAKERG M, GOVERDE R M P, KROON L G. Review of energy-efficient train control and timetabling[J]. European Journal of Operational Research, 2017, 257(2): 355-376. doi: 10.1016/j.ejor.2016.09.044
|
[6] |
SCHEEPMAKER G M, GOVERDE R M P. The interplay between energy-efficient train control and scheduled running time supplements[J]. Journal of Rail Transport Planning and Management, 2015, 5(4): 225-239. doi: 10.1016/j.jrtpm.2015.10.003
|
[7] |
XIE Ting, WANG Shu-yi, ZHAO Xia, et al. Optimization of train energy-efficient operation using simulated annealing algorithm[C]//Springer. Intelligent Computing for Sustainable Energy and Environment. Berlin: Springer, 2012: 351-359.
|
[8] |
LU Shao-feng, HILLMANSEN S, HO T K, et al. Single-train trajectory optimization[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 743-750. doi: 10.1109/TITS.2012.2234118
|
[9] |
黄友能, 宫少丰, 曹源, 等. 基于粒子群算法的城轨列车节能驾驶优化模型[J]. 交通运输工程学报, 2016, 16(2): 118-124. doi: 10.3969/j.issn.1671-1637.2016.02.014
HUANG You-neng, GONG Shao-feng, CAO Yuan, et al. Optimization model of energy-efficient driving for train in urban rail transit based on particle swarm algorithm[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 118-124. (in Chinese) doi: 10.3969/j.issn.1671-1637.2016.02.014
|
[10] |
SHANGGUAN Wei, WANG Juan, SHENG Zhao, et al. Adaptive fuzzy planning of optimal speed profiles for high-speed train operation on the basis of a Pareto set[J]. Transportation Research Record, 2016(2546): 103-111. http://www.researchgate.net/publication/307899388_Adaptive_Fuzzy_Planning_of_Optimal_Speed_Profiles_for_High-Speed_Train_Operation_on_the_Basis_of_a_Pareto_Set
|
[11] |
ACIKBAS S, SOYLEMEZ M T. Coasting point optimisation for mass rail transit lines using artificial neural networks and genetic algorithms[J]. IET Electric Power Applications, 2008, 2(3): 172-182. doi: 10.1049/iet-epa:20070381
|
[12] |
CHANG C S, XU D Y. Differential evolution based tuning of fuzzy automatic train operation for mass rapid transit system[J]. IEE Proceedings—Electric Power Applications, 2000, 147(3): 206-212. doi: 10.1049/ip-epa:20000329
|
[13] |
何庆. 基于遗传算法和模糊专家系统的列车优化控制[D]. 成都: 西南交通大学, 2006.
HE Qing. Train optimized control based on genetic algorithm and fuzzy expert system[D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese)
|
[14] |
WANG Yi-hui, SCHUTTER B D, VAN DE BOOM T, et al. Optimal trajectory planning for trains under a moving block signaling system[C]//IEEE. 2013 European Control Conference. New York: IEEE, 2013: 4556-4561.
|
[15] |
卢启衡, 冯晓云. 多维并行遗传算法在列车追踪运行节能优化中的应用[J]. 重庆大学学报, 2013, 36(4): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201304007.htm
LU Qi-heng, FENG Xiao-yun. Application of multi-dimension parallel genetic algorithm to energy-saving optimum control of trains in following operation[J]. Journal of Chongqing University, 2013, 36(4): 39-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201304007.htm
|
[16] |
LI Shu-kai, YANG Li-xing, GAO Zi-you. Adaptive coordinated control of multiple high-speed trains with input saturation[J]. Nonlinear Dynamics, 2016, 83: 2157-2169. doi: 10.1007/s11071-015-2472-8
|
[17] |
LI Shu-kai, YANG Li-xing, GAO Zi-you. Coordinated cruise control for high-speed train movements based on a multi-agent model[J]. Transportation Research Part C: Emerging Technologies, 2015, 56: 281-292. doi: 10.1016/j.trc.2015.04.016
|
[18] |
YAN Xi-hui, CAI Bai-gen, NING Bin, et al. Online distributed cooperative model predictive control of energy-saving trajectory planning for multiple high-speed train movements[J]. Transportation Research Part C: Emerging Technologies, 2016, 69: 60-78. doi: 10.1016/j.trc.2016.05.019
|
[19] |
刘建强, 魏远乐, 胡辉. 高速列车节能运行优化控制方法研究[J]. 铁道学报, 2014, 36(10): 7-12. doi: 10.3969/j.issn.1001-8360.2014.10.002
LIU Jian-qiang, WEI Yuan-le, HU hui. Research on optimization control method of energy-saving operation of high-speed trains[J]. Journal of the China Railway Society, 2014, 36(10): 7-12. doi: 10.3969/j.issn.1001-8360.2014.10.002
|
[20] |
ZHOU Lei-shan, TONG Lu, CHEN Jun-hua, et al. Joint optimization of high-speed train timetables and speed profiles: a unified modeling approach using space-time-speed grid networks[J]. Transportation Research Part B: Methodological, 2017, 97: 157-181. doi: 10.1016/j.trb.2017.01.002
|
[21] |
COLEMAN D, HOWLETT P, PUDNEY P, et al. Coasting boards vs optimal control[C]//IEEE. IET Conference on Railway Traction Systems. New York: IEEE, 2010: 14-19.
|
[22] |
FERNÁNDEZ-RODRÍGUEZ A, FERNÁNDEZ-CARDADOR A, CUCALA A P. Real time eco-driving of high speed trains by simulation-based dynamic multi-objective optimization[J]. Simulation Modelling Practice and Theory, 2018, 84: 50-68. doi: 10.1016/j.simpat.2018.01.006
|
[23] |
侯赞, 陈德旺, 李焱. 基于集成模糊推理的列车运行舒适度评价方法及应用[J]. 铁路计算机应用, 2012, 21(7): 4-7. doi: 10.3969/j.issn.1005-8451.2012.07.002
HOU Zan, CHEN De-wang, LI Yan. Comfort evaluation method and its application for train operation based on ensemble fuzzy reasoning[J]. Railway Computer Application, 2012, 21(7): 4-7. (in Chinese) doi: 10.3969/j.issn.1005-8451.2012.07.002
|
[24] |
ZOBEL C W. Representing perceived tradeoffs in defining disaster resilience[J]. Decision Support Systems, 2011, 50(2): 394-403. doi: 10.1016/j.dss.2010.10.001
|
[25] |
BARKER K, RAMIREZ-MARQUEZ J E, ROCCO C M. Resilience-based network component importance measures[J]. Reliability Engineering and System Safety, 2013, 117: 89-97. doi: 10.1016/j.ress.2013.03.012
|
[26] |
ADJETEY-BAHUN K, BIRREGAH B, CHȂTELET E, et al. A model to quantify the resilience of mass railway transportation systems[J]. Reliability Engineering and System Safety, 2016, 153: 1-14. doi: 10.1016/j.ress.2016.03.015
|
[27] |
STORN R, PRICE K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. doi: 10.1023/A:1008202821328
|
[28] |
QU B Y, SUGANTHAN P N, LIANG J J. Differential evolution with neighborhood mutation for multimodal optimization[J]. IEEE Transactions on Evolutionary Computation, 2012, 16(5): 601-614. doi: 10.1109/TEVC.2011.2161873
|
[29] |
PRECUP R E, DAVID R C, PETRIU E M, et al. Fuzzy control systems with reduced parametric sensitivity based on simulated annealing[J]. IEEE Transactions on Industrial Electronics, 2012, 59(8): 3049-3061. doi: 10.1109/TIE.2011.2130493
|
[30] |
段涛, 陈维荣, 戴朝华, 等. 多智能体搜寻者优化算法在电力系统无功优化中的应用[J]. 电力系统保护与控制, 2009, 37(14): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW200914006.htm
DUAN Tao, CHEN Wei-rong, DAI Chao-hua, et al. Reactive power optimization in power system based on multi-agent seeker optimization algorithm[J]. Power System Protection and Control, 2009, 37(14): 10-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW200914006.htm
|
[31] |
SICRE C, CUCALA A P, FERNÁNDEZ-CARDADOR A. Real time regulation of efficient driving of high speed trains based on a genetic algorithm and a fuzzy model of manual driving[J]. Engineering Applications of Artificial Intelligence, 2014, 29: 79-92. doi: 10.1016/j.engappai.2013.07.015
|