Volume 21 Issue 5
Nov.  2021
Turn off MathJax
Article Contents
WANG Pu, WANG Shu-guo, GE Jing, YANG Dong-sheng. Stiffness deterioration rule of elastic iron plate of high-speed turnout and its influence on speed increase[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 74-83. doi: 10.19818/j.cnki.1671-1637.2021.05.006
Citation: WANG Pu, WANG Shu-guo, GE Jing, YANG Dong-sheng. Stiffness deterioration rule of elastic iron plate of high-speed turnout and its influence on speed increase[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 74-83. doi: 10.19818/j.cnki.1671-1637.2021.05.006

Stiffness deterioration rule of elastic iron plate of high-speed turnout and its influence on speed increase

doi: 10.19818/j.cnki.1671-1637.2021.05.006
Funds:

National Natural Science Foundation of China 51808557

National Natural Science Foundation of China 51878661

More Information
  • Author Bio:

    WANG Pu(1988-), male, associate researcher, PhD, wpwp2012@yeah.net

  • Corresponding author: WANG Shu-guo(1974-), male, researcher, PhD, zzddxx4473@sina.com
  • Received Date: 2021-04-26
    Available Online: 2021-11-13
  • Publish Date: 2021-10-01
  • A tracking test was conducted to evaluate the damage development and stiffness evolution of the elastic iron plate of high-speed turnouts. Based on the measured data, a vehicle-turnout coupling dynamics calculation model was established, and the influence of stiffness deterioration of the elastic iron plate on the vehicle-turnout dynamic characteristics was analyzed. The adaptability of high-speed turnout to the further increase of operation speed under deteriorated stiffness was studied. Analysis results show that with the long-term use of the elastic iron plate of high-speed turnout, a series of damages appear, including rubber aging, cracking, separation, falling off, and rusting of iron components. For both the ballast and ballastless turnouts, the ratios of dynamic stiffness to static stiffness of iron plates change slightly, whereas the static stiffnesses increase. The static stiffness of the iron plate of ballast turnout shows evident changes at the initial stage, and the growing rate can exceed 60% after 3 years of service. The static stiffness of the iron plate of the ballastless turnout in the general area can increase maximum by 30%. The stiffness change is smaller than that of the ballast turnout. The static stiffness of the iron plate of the ballastless turnout changes rapidly in the cold, windy, and sandy areas. The gradual stiffness deterioration of the elastic iron plate of high-speed turnout has an effect on the dynamic performances. Under stiffness deterioration, the rail deformations in the turnout zone decrease, the wheel-rail dynamic interactions increase, and the safety parameters increase. The moving trajectories of the vehicle and wheelset are basically unchanged, but the vibration of both the wheelset and vehicle intensifies. Under stiffness deterioration of the elastic iron plate of the high-speed turnout, the increase in operation speed leads to further deterioration of the vehicle-turnout system dynamic performances, and the margins of safety and fatigue further reduce. The stiffness deterioration reduces the adaptability of the high-speed turnout to the speed increase. To expand the scope of raising speed, the stiffness deterioration of the elastic iron plate in the turnout zone should be considered. Some elastic iron plates should be replaced appropriately to ensure the running safety and stability. 2 tabs, 9 figs, 30 refs.

     

  • loading
  • [1]
    王平, 陈嵘, 徐井芒, 等. 高速铁路道岔系统理论与工程实践研究综述[J]. 西南交通大学学报, 2016, 51(2): 357-372. doi: 10.3969/j.issn.0258-2724.2016.02.015

    WANG Ping, CHEN Rong, XU Jing-mang, et al. Theories and engineering practices of high-speed railway turnout system: survey and review[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 357-372. (in Chinese) doi: 10.3969/j.issn.0258-2724.2016.02.015
    [2]
    王树国, 葛晶, 王猛, 等. 高速道岔关键技术试验研究[J]. 铁道学报, 2015, 37(1): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201501016.htm

    WANG Shu-guo, GE Jing, WANG Meng, et al. Experimental study on key technologies of high-speed turnout[J]. Journal of the China Railway Society, 2015, 37(1): 77-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201501016.htm
    [3]
    李金城, 丁军君, 杨九河, 等. 高速道岔发展及研究现状分析[J]. 铁道标准设计, 2020, 64(3): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202003010.htm

    LI Jin-cheng, DING Jun-jun, YANG Jiu-he, et al. Analysis of the development and research status of high-speed turnout[J]. Railway Standard Design, 2020, 64(3): 54-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202003010.htm
    [4]
    蔡小培, 张乾, 万洪波, 等. 高速铁路64 m主跨桥上无缝道岔检算与结构优化[J]. 铁道工程学报, 2020, 37(9): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202009003.htm

    CAI Xiao-pei, ZHANG Qian, WAN Hong-bo, et al. Checking and structure optimization of welded turnout on 64 m- span bridge in high speed railway[J]. Journal of Railway Engineering Society, 2020, 37(9): 12-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202009003.htm
    [5]
    BLANCO-SAURA A E, VELARTE-GONZÁLEZ J L, RIBES-LLARIO F, et al. Study of the dynamic vehicle-track interaction in a railway turnout[J]. Multibody System Dynamics, 2018, 43: 21-36. doi: 10.1007/s11044-017-9579-2
    [6]
    谭晓春, 罗雁云. 高速道岔辙叉区动力响应仿真分析[J]. 科学技术与工程, 2007, 7(23): 6252-6256. doi: 10.3969/j.issn.1671-1815.2007.23.064

    TAN Xiao-chun, LUO Yan-yun. Dynamic analysis on sharing pads of high-speed turnout[J]. Science Technology and Engineering, 2007, 7(23): 6252-6256. (in Chinese) doi: 10.3969/j.issn.1671-1815.2007.23.064
    [7]
    辛涛. 高速铁路高架桥上无砟道岔动力特性研究[D]. 北京: 北京交通大学, 2011.

    XIN Tao. Study on dynamic characteristics of ballastless turnout on high-speed railway bridge[D]. Beijing: Beijing Jiaotong University, 2011. (in Chinese)
    [8]
    闻方宇. 基于ANSYS/DYNA的高速动车道岔通过轮轨动力研究[D]. 北京: 北京交通大学, 2012.

    WEN Fang-yu. Study on wheel-rail dynamic interactions for high-speed vehicle negotiating turnout based on ANSYS/DYNA[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese)
    [9]
    张志良, 史海欧, 袁泉, 等. 地铁道岔侧向速度提升和低磨耗结构设计研究[J]. 铁道建筑, 2021, 61(6): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202106029.htm

    ZHANG Zhi-liang, SHI Hai-ou, YUAN Quan, et al. Research on structure design of increasing passing speed and low wear in the diverging route of metro turnouts[J]. Railway Engineering, 2021, 61(6): 129-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202106029.htm
    [10]
    陈小平, 王平, 张瑶. 250 km/h客运专线无砟道岔的合理轨道刚度[J]. 铁道工程学报, 2010, 27(7): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201007007.htm

    CHEN Xiao-ping, WANG Ping, ZHANG Yao. The reasonable stiffness of ballastless track turnout of 250 km/h passenger dedicated line[J]. Journal of Railway Engineering Society, 2010, 27(7): 25-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201007007.htm
    [11]
    孙加林. 重载铁路道岔区轨道刚度的分布及均匀化[J]. 中国铁道科学, 2017, 38(3): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201703003.htm

    SUN Jia-lin. Distribution and homogenization of track stiffness in turnout area of heavy haul railway[J]. China Railway Science, 2017, 38(3): 19-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201703003.htm
    [12]
    张艳平, 姚力, 刘大园. 城市轨道交通线路道岔区轨道刚度分布特征及均匀化研究[J]. 城市轨道交通研究, 2014, 17(9): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201409013.htm

    ZHANG Yan-ping, YAO Li, LIU Da-yuan. Study on distribution and homogenization of turnout stiffness for urban rail transit[J]. Urban Mass Transit, 2014, 17(9): 29-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201409013.htm
    [13]
    曾志平, 陈秀方, 余志武, 等. 直逆向过岔列车与桥上道岔耦合振动影响因素分析[J]. 中南大学学报(自然科学版), 2008, 39(4): 856-861. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200804041.htm

    ZENG Zhi-ping, CHEN Xiu-fang, YU Zhi-wu, et al. Analysis of influence of some factors on train-turnout on bridge coupling vibration with train running in main direction[J]. Journal of Central South University (Science and Technology), 2008, 39(4): 856-861. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200804041.htm
    [14]
    费维周. 道岔区刚度均匀化方法的研究[J]. 铁道工程学报, 2013(7): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201307006.htm

    FEI Wei-zhou. Research on method for stiffness homogenization in turnout area[J]. Journal of Railway Engineering Society, 2013(7): 28-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201307006.htm
    [15]
    钱坤, 王树国, 王猛, 等. 重载铁路12号道岔轨道刚度均匀化研究[J]. 铁道建筑, 2016, 56(1): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201601017.htm

    QIAN Kun, WANG Shu-guo, WANG Meng, et al. Research on track stiffness homogenization for heavy haul railway No. 12 turnout[J]. Railway Engineering, 2016, 56(1): 67-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201601017.htm
    [16]
    陈嵘, 王平. 75 kg/m钢轨12号高锰钢固定辙叉单开道岔刚度均匀化设计研究[J]. 铁道标准设计, 2012(8): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201208002.htm

    CHEN Rong, WANG Ping. Stiffness homogenization of No. 12 single turnout with fixed frog and high manganese steel used in 75 kg/m rail[J]. Railway Standard Design, 2012(8): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201208002.htm
    [17]
    沈彬然, 孙宏友, 徐井芒, 等. 有轨电车6号单开道岔刚度均匀化研究[J]. 铁道建筑, 2015, 55(12): 116-119. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201512033.htm

    SHEN Bin-ran, SUN Hong-you, XU Jing-mang, et al. Study on stiffness homogenization of No. 6 simple turnout for tram[J]. Railway Engineering, 2015, 55(12): 116-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201512033.htm
    [18]
    孙宏友, 王平, 张东风, 等. 整体道床60 kg/m钢轨12号5 m间距交叉渡线道岔刚度均匀化探讨[J]. 铁道标准设计, 2015(1): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201501007.htm

    SUN Hong-you, WANG Ping, ZHANG Dong-feng, et al. Approach to stiffness homogenization of No. 12 crossover turnout with integrated bed and 5 m spacing used in 60 kg/m rail[J]. Railway Standard Design, 2015(1): 25-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201501007.htm
    [19]
    侯茂锐, 胡晓依, 宗仁莉, 等. 高速动车组转臂定位橡胶节点刚度对车辆动力学性能影响[J]. 中国铁道科学, 2021, 42(4): 120-128. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202104014.htm

    HOU Mao-rui, HU Xiao-yi, ZONG Ren-li, et al. Influence of stiffness of arm positioning rubber node on vehicle dynamic performance of high-speed EMU[J]. China Railway Science, 2021, 42(4): 120-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202104014.htm
    [20]
    孙丽霞, 李晓峰, 胡晓依, 等. 高速动车组车轮磨耗对轮轨接触关系及车辆动力学性能的影响[J]. 中国铁道科学, 2020, 41(6): 117-126. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202006013.htm

    SUN Li-xia, LI Xiao-feng, HU Xiao-yi, et al. Influence of wheel wear on wheel-rail contact relationship and vehicle dynamic performance of high-speed EMU[J]. China Railway Science, 2020, 41(6): 117-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202006013.htm
    [21]
    中国铁道科学研究院. 车辆-轨道耦合动力学仿真模型验证方案[R]. 北京: 中国铁道科学研究院, 2016.

    China Academy of Railway Sciences. Verification scheme of vehicle-track coupling dynamics simulation model[R]. Beijing: China Academy of Railway Sciences, 2016. (in Chinese)
    [22]
    邓学晖, 梁靓. CRH380B动车组车体高度差对动力学性能的影响[J]. 大连交通大学学报, 2017, 38(2): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201702006.htm

    DENG Xue-hui, LIANG Liang. Influence of vehicle hight difference on dynamic performance of CRH380B[J]. Journal of Dalian Jiaotong University, 2017, 38(2): 27-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201702006.htm
    [23]
    HERTZ H. Ueber die berührung fester elastische körper[J]. Journal Für Die Reine Und Angewandte Mathematik, 1882, 92: 156-171.
    [24]
    KALKERJ J. A fast algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11(1): 1-13.
    [25]
    杨亮亮, 罗世辉, 傅茂海. 基于轮轨磨耗对30 t轴重货车车轮踏面优化研究[J]. 铁道学报, 2014, 36(8): 12-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201408004.htm

    YANG Liang-liang, LUO Shi-hui, FU Mao-hai. Study on optimization of wheel profiles of freight car with 30 t axle load based on wheel-rail wear[J]. Journal of the China Railway Society, 2014, 36(8): 12-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201408004.htm
    [26]
    任尊松, 孙守光. 道岔区轮轨接触几何关系研究[J]. 工程力学, 2008, 25(11): 223-230. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200811039.htm

    REN Zun-song, SUN Shou-guang. Study on the wheel/rail contact geometry relation of the turnout zone[J]. Engineering Mechanics, 2008, 25(11): 223-230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200811039.htm
    [27]
    任尊松, 翟婉明, 王其昌. 车辆-道岔系统横向振动特性研究[J]. 铁道学报, 2000, 22(4): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200004007.htm

    REN Zun-song, ZHAI Wan-ming, WANG Qi-chang. Study on lateral dynamic characteristics of vehicle-turnout system[J]. Journal of the China Railway Society, 2000, 22(4): 28-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200004007.htm
    [28]
    任尊松. 车辆—道岔系统动力学研究[D]. 成都: 西南交通大学, 2000.

    REN Zun-song. Research on vehicle-turnout system dynamics[D]. Chengdu: Southwest Jiaotong University, 2000. (in Chinese)
    [29]
    骆焱, 侯爱滨. 时速350 km客运专线铁路可动心轨辙叉单开道岔的结构设计[J]. 铁道标准设计, 2009(5): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS200905009.htm

    LUO Yan, HOU Ai-bin. Design on movable-point frog crossing lateral turnout on passenger dedicated lines with a speed of 350 km/h[J]. Railway Standard Design, 2009(5): 19-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS200905009.htm
    [30]
    曹洋, 王平, 赵卫华. 基于平面参数法的道岔线型设计研究[J]. 铁道建筑, 2011, 51(2): 101-103. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201102036.htm

    CAO Yang, WANG Ping, ZHAO Wei-hua. Study on turnout line-shape design based on plane parameters method[J]. Railway Engineering, 2011, 51(2): 101-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201102036.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (663) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return