Citation: | LIU Ji-xin, DONG Xin-fang, XU Chen, YANG Guang, JIANG Hao. Aircraft trajectory clustering in terminal area and anomaly recognition based on density peak[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 214-226. doi: 10.19818/j.cnki.1671-1637.2021.05.018 |
[1] |
EUROCONTRO L. EUROCONTRO L Specification for trajectory prediction[R]. Brussels: EUROCONTROL, 2017.
|
[2] |
BASORA L, OLIVE X, DUBOT T. Recent advances in anomaly detection methods applied to aviation[J]. Aerospace, 2019, 6(11): 117. doi: 10.3390/aerospace6110117
|
[3] |
MURÇA M C R, HANSMAN R J. Predicting and planning airport acceptance rates in metroplex systems for improved traffic flow management decision support[J]. Transportation Research Part C: Emerging Technologies, 2018, 97: 301-323. doi: 10.1016/j.trc.2018.10.020
|
[4] |
ECKSTEIN A. Automated flight track taxonomy for measuring benefits from performance based navigation[C]//CLARK R. 2009 Integrated Communications, Navigation and Surveillance Conference. New York: Institute of Electrical and Electronics Engineers, 2009: 1-12.
|
[5] |
REHM F. Clustering of flight tracks[C]//ERIC J. American Institute of Aeronautics and Astronautics Infotech at Aerospace 2010. Atlanta: American Institute of Aeronautics and Astronautics, 2010: 1-9.
|
[6] |
ENRIQUEZ M. Identifying temporally persistent flows in the terminal airspace via spectral clustering[C]// SAUNDERS-HODGE A. Proceedings of the 10th USA/Europe Air Traffic Management Research and Development Seminar. Chicago: Federal Aviation Administration, 2013: 10-13.
|
[7] |
GARIEL M, SRIVASTAVA A N, FERON E. Trajectory clustering and an application to airspace monitoring[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1511-1524. doi: 10.1109/TITS.2011.2160628
|
[8] |
GARIEL M. Toward a graceful degradation of air traffic management systems[D]. Atlanta: Georgia Institute of Technology, 2010.
|
[9] |
ARNESON H, BOMBELLI A, SEGARRA-TORNE A, et al. Analysis of convective-weather impact on pre-departure routing decisions for flights traveling between Fort Worth Center and New York Air Center[C]//HANSMAN R J. 17th AIAA Aviation Technology, Integration, and Operations Conference. Richmond: American Institute of Aeronautics and Astronautics, 2017: 3084-3096.
|
[10] |
MARZUOLI A, GARIEL M, VELA A, et al. Data-based modeling and optimization of en-route traffic[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6): 1930-1945. doi: 10.2514/1.G000010
|
[11] |
BOMBELLI A, SOLER L, TRUMBAUER E, et al. Strategic air traffic planning with Fréchet distance aggregation and rerouting[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(5): 1117-1129. doi: 10.2514/1.G002308
|
[12] |
ANDRIENKO G, ANDRIENKO N, FUCHS G, et al. Clustering trajectories by relevant parts for air traffic analysis[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(1): 34-44. doi: 10.1109/TVCG.2017.2744322
|
[13] |
LI Li-shuai, GARIEL M, HANSMAN R J, et al. Anomaly detection in onboard-recorded flight data using cluster analysis[C]//ELLIS H. IEEE/AIAA 30th Digital Avionics Systems Conference. Norfolk: Institute of Electrical and Electronics Engineers. 2011: 4A4-1-11.
|
[14] |
LI Li-shuai, HANSMAN R J, PALACIOS R, et al. Anomaly detection via a Gaussian mixture model for flight operation and safety monitoring[J]. Transportation Research Part C: Emerging Technologies, 2016, 64: 45-57. doi: 10.1016/j.trc.2016.01.007
|
[15] |
HONG S, LEE K. Trajectory prediction for vectored area navigation arrivals[J]. Journal of Aerospace Information Systems, 2015, 12(7): 490-502. doi: 10.2514/1.I010245
|
[16] |
DELAHAYE D, PUECHMOREL S, ALAM S, et al. Trajectory mathematical distance applied to airspace major flows extraction[C]//ABBUD J. Electronic Navigation Research Institute Air Traffic Management and Systems Ⅲ. Berlin: Springer, 2019: 51-66.
|
[17] |
王超, 韩邦村, 王飞. 基于轨迹谱聚类的终端区盛行交通流识别方法[J]. 西南交通大学学报, 2014, 49(3): 546-552. doi: 10.3969/j.issn.0258-2724.2014.03.027
WANG Chao, HAN Bang-cun, WANG Fei. Identification of prevalent air traffic flow in terminal airspace based on trajectory spectral clustering[J]. Journal of Southwest Jiaotong University, 2014, 49(3): 546-552. (in Chinese) doi: 10.3969/j.issn.0258-2724.2014.03.027
|
[18] |
熊伟, 顾祥岐, 徐从安, 等. 基于高斯混合EM聚类的多编队航迹起始方法[J]. 系统工程与电子技术, 2019, 41(11): 2424-2430. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201911004.htm
XIONG Wei, GU Xiang-qi, XU Cong-an, et al. Multi-formation track initiation method based on Gaussian mixture EM clustering[J]. Systems Engineering and Electronics, 2019, 41(11): 2424-2430. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201911004.htm
|
[19] |
王超, 徐肖豪, 王飞. 基于航迹聚类的终端区进场程序管制适用性分析[J]. 南京航空航天大学学报, 2013, 45(1): 130-139. doi: 10.3969/j.issn.1005-2615.2013.01.022
WANG Chao, XU Xiao-hao, WANG Fei. ATC serviceability analysis of terminal arrival procedures using trajectory clustering[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2013, 45(1): 130-139. (in Chinese) doi: 10.3969/j.issn.1005-2615.2013.01.022
|
[20] |
徐涛, 陈雪蕊, 吕宗平. 基于航迹聚类的终端区飞行程序轨迹表示[J]. 四川大学学报(工程科学版), 2016, 48(6): 188-196. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201606026.htm
XU Tao, CHEN Xue-rui, LYU Zong-ping. Flight procedure representation of terminal area based on flight tracks clustering[J]. Advanced Engineering Sciences, 2016, 48(6): 188-196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201606026.htm
|
[21] |
SABHNANI G R, YOUSEFI A, KOSTITSYNA I, et al. Algorithmic traffic abstraction and its application to NextGen generic airspace[C]//BALAKRISHINAN H. 10th AIAA Aviation Technology, Integration and Operations Conference 2010, Richmond: AIAA, 2010: 9335-9345
|
[22] |
MAHBOUBI Z, KOCHENDERFER M J. Learning traffic patterns at small airports from flight tracks[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(4): 917-926. doi: 10.1109/TITS.2016.2598064
|
[23] |
MURÇA M C R, HANSMAN R J, LI L, et al. Flight trajectory data analytics for characterization of air traffic flows: a comparative analysis of terminal area operations between New York, Hong Kong and Sao Paulo[J]. Transportation Research Part C: Emerging Technologies, 2018, 97: 324-347. doi: 10.1016/j.trc.2018.10.021
|
[24] |
OLIVE X, GRIGNARD J, DUBOT T, et al. Detecting controllers' actions in past mode S data by autoencoder-based anomaly detection[C]//DIRK S. SESAR Innovation Days 2018. Brussels: EUROCONTROL, 2018: 1-9.
|
[25] |
GALLEGO C E V, GOMEZ COMENDADOR V F, SAEZ NIETO F J, et al. Discussion on density-based clustering methods applied for automated identification of airspace flows[C]//GEORGE A. IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). London: Institute of Electrical and Electronics Engineers, 2018: 1-10.
|
[26] |
ZHANG W, TAN X. Combining outlier detection and reconstruction error minimization for label noise reduction[C]// MASATOSHI A. 2019 IEEE International Conference on Big Data and Smart Computing. New York: IEEE, 2019: 1-4.
|
[27] |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. doi: 10.1126/science.1127647
|
[28] |
ZHOU Chong, PAFFENROTH R C. Anomaly detection with robust deep autoencoders[C]//YU Shi-peng. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax: Association for Computing Machinery, 2017: 665-674.
|
[29] |
PAFFENROTH R, TOIT P, NONG R, et al. Space-time signal processing for distributed pattern detection in sensor networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(1): 38-49. doi: 10.1109/JSTSP.2012.2237381
|
[30] |
RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492. doi: 10.1126/science.1242072
|
[31] |
SCHUBERT E, SANDER J, ESTER M, et al. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN[J]. ACM Transactions on Database Systems, 2017, 42(3): 19.
|