Citation: | XU Xin-yue, WU Yu-hang, ZHANG Ying-nan, WANG Xue-qin, LIU Jun. Short-term passenger flow forecasting method of rail transit under station closure considering spatio-temporal modification[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 251-264. doi: 10.19818/j.cnki.1671-1637.2021.05.021 |
[1] |
叶红霞. 突发事件下城市轨道交通网络客流重分布预测方法研究与应用[J]. 城市轨道交通研究, 2018, 21(8): 63-66. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201808015.htm
YE Hong-xia. On the prediction method of passenger flow redistribution under urban rail transit network emergency[J]. Urban Mass Transit, 2018, 21(8): 63-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201808015.htm
|
[2] |
NOURSALEHI P, KOUTSOPOULOS H N, ZHAO Jin-hua. Real time transit demand prediction capturing station interactions and impact of special events[J]. Transportation Research Part C: Emerging Technologies, 2018, 97: 277-300. doi: 10.1016/j.trc.2018.10.023
|
[3] |
LI Yang, WANG Xu-dong, SUN Shuo, et al. Forecasting short-term subway passenger flow under special events scenarios using multiscale radial basis function networks[J]. Transportation Research Part C: Emerging Technologies, 2017, 77: 306-328. doi: 10.1016/j.trc.2017.02.005
|
[4] |
LAÑA I, LOBO J L, CAPECCI E, et al. Adaptive long-term traffic state estimation with evolving spiking neural networks[J]. Transportation Research Part C: Emerging Technologies, 2019, 101: 126-144. doi: 10.1016/j.trc.2019.02.011
|
[5] |
张丽英, 孟斌, 尹芹. 基于符号集合近似的城市轨道交通站点分类研究[J]. 地球信息科学学报, 2016, 18(12): 1597-1607. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201612005.htm
ZHANG Li-ying, MENG Bin, YIN Qin. Classification of urban rail transit stations based on SAX[J]. Journal of Geo-Information Science, 2016, 18(12): 1597-1607. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201612005.htm
|
[6] |
LKHAGVA B, SUZUKI Y, KAWAGOE K. New time series data representation ESAX for financial applications[C]//IEEE. Proceedings of the 22nd International Conference on Data Engineering Workshops. New York: IEEE, 2006: 17-22.
|
[7] |
ZHANG Ke, LI Yuan, CHAI Yi, et al. Trend-based symbolic aggregate approximation for time series representation[C]// IEEE. The 30th Chinese Control and Decision Conference. New York: IEEE, 2018: 2234-2240.
|
[8] |
YAHYAOUI H, AL-DAIHANI R. A novel trend based SAX reduction technique for time series[J]. Expert Systems with Applications, 2019, 130: 113-123. doi: 10.1016/j.eswa.2019.04.026
|
[9] |
RUAN Hui, HU Xiao-guang, XIAO Jin, et al. TrSAX—an improved time series symbolic representation for classification[J]. ISA Transactions, 2020, 100: 387-395. doi: 10.1016/j.isatra.2019.11.018
|
[10] |
HONG J Y, PARK S H, BAEK J G. SSDTW: shape segment dynamic time warping[J]. Expert Systems with Applications, 2020, 150(3): 113291.
|
[11] |
ZHAO Jian-ping, ITTI L. ShapeDTW: shape dynamic time warping[J]. Pattern Recognition, 2018, 74: 171-184. doi: 10.1016/j.patcog.2017.09.020
|
[12] |
PEREIRA F C, RODRIGUES F, BEN-AKIVA M. Using data from the web to predict public transport arrivals under special events scenarios[J]. Journal of Intelligent Transportation Systems, 2015, 19(3): 273-288. doi: 10.1080/15472450.2013.868284
|
[13] |
SILVA R, KANG S M, AIROLDI E M. Predicting traffic volumes and estimating the effects of shocks in massive transportation systems[J]. PNAS, 2015, 112(18): 5643-5648. doi: 10.1073/pnas.1412908112
|
[14] |
MA Tao, ZHOU Zhou, ANTONIOU C. Dynamic factor model for network traffic state forecast[J]. Transportation Research Part B: Methodological, 2018, 118: 281-317. doi: 10.1016/j.trb.2018.10.018
|
[15] |
CHEN En-hui, YE Zhi-rui, WANG Chao, et al. Subway passenger flow prediction for special events using smart card data[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1109-1120. doi: 10.1109/TITS.2019.2902405
|
[16] |
MA Tao, ANTONIOU C, TOLEDO T. Hybrid machine learning algorithm and statistical time series model for network-wide traffic forecast[J]. Transportation Research Part C: Emerging Technologies, 2020, 111: 352-372. doi: 10.1016/j.trc.2019.12.022
|
[17] |
TAO Yu-xin, YAN Hai-rong, GAO Hang, et al. Application of SVR optimized by modified simulated annealing (MSA-SVR) air conditioning load prediction model[J]. Journal of Industrial Information Integration, 2019, 15: 247-251. doi: 10.1016/j.jii.2018.04.003
|
[18] |
SUN Yi-xin, LENG Biao, GUAN Wei. A novel wavelet- SVM short-time passenger flow prediction in Beijing subway system[J]. Neurocomputing, 2015, 166: 109-121. doi: 10.1016/j.neucom.2015.03.085
|
[19] |
姚智胜, 邵春福, 高永亮. 基于支持向量回归机的交通状态短时预测方法研究[J]. 北京交通大学学报, 2006, 30(3): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT200603004.htm
YAO Zhi-sheng, SHAO Chun-fu, GAO Yong-liang. Research methods of short-term traffic forecasting based on support vector regression[J]. Journal of Beijing Jiaotong University, 2006, 30(3): 19-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT200603004.htm
|
[20] |
米根锁, 赵丽琴, 罗淼. GCPSO优化混合核SVM的地铁车站客流预测[J]. 计算机工程与应用, 2015, 51(14): 231-235, 270. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201514044.htm
MI Gen-suo, ZHAO Li-qin, LUO Miao. Subway station passenger flow forecast based on mixed kernel support vector machine optimized by golden section chaotic particle swarm optimization[J]. Computer Engineering and Applications, 2015, 51(14): 231-235. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201514044.htm
|
[21] |
杨军, 侯忠生. 基于小波分析的最小二乘支持向量机轨道交通客流预测方法[J]. 中国铁道科学, 2013, 34(3): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201303021.htm
YANG Jun, HOU Zhong-sheng. A wavelet analysis based LS-SVM rail transit passenger flow prediction method[J]. China Railway Science, 2013, 34(3): 122-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201303021.htm
|
[22] |
TANG Li-yang, ZHAO Yang, CABRERA J, et al. Forecasting short-term passenger flow: an empirical study on Shenzhen Metro[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 2613-2622.
|
[23] |
LIN J, KEOGH E, LONARDI S, et al. A symbolic representation of time series, with implications for streaming algorithms[C]//Association for Computing Machinery. Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. New York: Association for Computing Machinery, 2003: 2-11.
|
[24] |
SAKOE H. Two-level DP-matching—a dynamic programming- based pattern matching algorithm for connected word recognition[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1979, ASSP-27(6): 588-595.
|
[25] |
奉国和. SVM分类核函数及参数选择比较[J]. 计算机工程与应用, 2011, 47(3): 123-124, 128. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201103038.htm
FENG Guo-he. Parameter optimizing for support vector machines classification[J]. Computer Engineering and Applications, 2011, 47(3): 123-124, 128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201103038.htm
|
[26] |
DOZ C, GIANNONE D, REICHLIN L. A quasi-maximum likelihood approach for large approximate dynamic factor models[J]. The Review of Economics and Statistics, 2012, 94(4): 1014-1024.
|
[27] |
BAI Ju-shan, LI Kun-peng. Maximum likelihood estimation and inference for approximate factor models of high dimension[J]. The Review of Economics and Statistics, 2016, 98(2): 298-309.
|
[28] |
汪选胜. 改进的三次指数平滑模型在交通优化中的研究与应用[J]. 机械制造与自动化, 2012, 41(4): 18-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD201204006.htm
WANG Xuan-sheng. Research on improved cubic exponential smooth model in traffic optimization and its application[J]. Machine Building and Automation, 2012, 41(4): 18-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZHD201204006.htm
|
[29] |
TOQUÉ F, CỘME E, EL MAHRSI M K, et al. Forecasting dynamic public transport origin-destination matrices with long-short term memory recurrent neural networks[C]//IEEE. IEEE 19th International Conference on Intelligent Transportation Systems. New York: IEEE, 2016: 1071-1076.
|
[30] |
WU Yu-hang, HUANG Bao-jing, LI Xue, et al. A data-driven approach to detect passenger flow anomaly under station closure[J]. IEEE Access, 2020, 8: 149602-149615.
|