Citation: | YANG Wei, HUANG Li-hong, ZHAO Xiang-mo, WANG Xiao. Puddle area segmentation of asphalt pavements based on FRRN attention and supervision[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 309-322. doi: 10.19818/j.cnki.1671-1637.2021.05.026 |
[1] |
季天剑, 黄晓明, 刘清泉. 部分滑水对路面附着系数的影响[J]. 交通运输工程学报, 2003, 3(4): 10-12. http://jtysgcxb.xml-journal.net/article/id/200304003
JI Tian-jian, HUANG Xiao-ming, LIU Qing-quan. Part hydroplaning effect on pavement friction coefficient[J]. Journal of Traffic and Transportation Engineering, 2003, 3(4): 10-12. (in Chinese) http://jtysgcxb.xml-journal.net/article/id/200304003
|
[2] |
周海超, 梁晨, 杨建, 等. 提升轮胎抗滑水性能的仿生方法[J]. 机械工程学报, 2015, 51(8): 125-130, 136. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201508018.htm
ZHOU Hai-chao, LIANG Chen, YANG Jian, et al. Bionic method for improving tire anti-hydroplaning performance[J]. Journal of Mechanical Engineering, 2015, 51(8): 125-130, 136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201508018.htm
|
[3] |
周海超, 王国林, 姜震, 等. 湿滑状态下轮胎路面摩擦特性的数值分析方法[J]. 机械工程学报, 2020, 56: 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202021019.htm
ZHOU Hai-chao, WANG Guo-lin, JIANG Zhen, et al. Numerical analysis method for friction characteristics of tire-pavement[J]. Journal of Mechanical Engineering, 2020, 56: 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202021019.htm
|
[4] |
JONSSON P, CASSELGREN J, THORNBERG B. Road surface status classification using spectral analysis of NIR camera images[J]. IEEE Sensors Journal, 2015, 15(3): 1641-1656. doi: 10.1109/JSEN.2014.2364854
|
[5] |
AMTHOR M, HARTMANN B, DENZLER J. Road condition estimation based on spatio-temporal reflection models[C]//DAGM. Proceedings of the 37th German Conference on Pattern Recognition. Aachen: DAGM, 2015: 3-15.
|
[6] |
PICCARDI A, COLACE L. Optical detection of dangerous road conditions[J]. Sensors, 2019, 19(6): 1360. doi: 10.3390/s19061360
|
[7] |
AKI M, ROJANAARPA T, NAKANO K, et al. Road surface recognition using laser radar for automatic platooning[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(10): 2800-2810. doi: 10.1109/TITS.2016.2528892
|
[8] |
NAKASHIMA S, ARAMAKI S, KITAZONO Y, et al. Application of ultrasonic sensors in road surface condition distinction methods[J]. Sensors, 2016, 16(10): 1678. doi: 10.3390/s16101678
|
[9] |
KALLIRIS M, KANARACHOS S, KOTSAKIS R, et al. Machine learning algorithms for wet road surface detection using acoustic measurements[C]//IEEE. International Conference on Mechatronics. New York: IEEE, 2019: 265-270.
|
[10] |
卢俊辉, 王建强, 李克强, 等. 基于路面温度和太阳辐射强度的路面状态识别方法[J]. 农业机械学报, 2010, 41(5): 21-23, 11. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201005004.htm
LU Juan-hui, WANG Jian-qiang, LI Ke-qiang, et al. Road condition detection based on road temperature and solar radiation[J]. Transactions of the Chinese Society of Agricultural Machinery, 2010, 41(5): 21-23, 11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201005004.htm
|
[11] |
顾昊, 李勃, 张潇, 等. 基于偏振测量的路面积水积冰检测方法[J]. 电子测量技术, 2011, 34(7): 99-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DZCL201107026.htm
GU Hao, LI Bo, ZHANG Xiao, et al. Detection of road surface water and ice based on polarization measurement[J]. Electronic Measurement Technology, 2011, 34(7): 99-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZCL201107026.htm
|
[12] |
GUERRERO-IBÁÑEZ J, ZEADALLY S, CONTRERAS-CASTILLO J, et al. Sensor technologies for intelligent transportation systems[J]. Sensors, 2018, 18(4): 1212.
|
[13] |
YAMADA M, UEDA K, HORIBA I, et al. Detection of wet-road conditions from images captured by a vehicle-mounted camera[J]. Journal of Robotics and Mechatronics, 2005, 17(3): 269-276.
|
[14] |
YANG H J, JANG H, JEONG D S. Detection algorithm for road surface condition using wavelet packet transform and SVM[C]//IEEE. Proceedings of the 19th Korea-Japan Joint Workshop on Frontiers of Computer Vision. New York: IEEE, 2013: 323-326.
|
[15] |
KIM J, BAEK J, CHOI H, et al. Wet area and puddle detection for advanced driver assistance systems (ADAS) using a stereo camera[J]. International Journal of Control Automation and Systems, 2016, 14(1): 263-271.
|
[16] |
ZHAO Jian-dong, WU Hong-qiang, CHEN Liang-liang. Road surface state recognition based on SVM optimization and image segmentation processing[J]. Journal of Advanced Transportation, 2017, 2017: 1-21.
|
[17] |
刘新宇, 黄德启. 基于SVM分类器的道路湿滑图像分类方法研究[J]. 武汉理工大学学报(交通科学与工程版), 2011, 35(4): 784-787. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ201104033.htm
LIU Xin-yu, HUANG De-qi. Study on classifier of wet-road images based on SVM[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2011, 35(4): 784-787. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ201104033.htm
|
[18] |
陈添丁, 王娃, 朱敬意, 等. 基于图像偏振特性的野外环境积水区域检测[J]. 光电工程, 2013, 40(4): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201304006.htm
CHEN Tian-ding, WANG Wa, ZHU Jing-yi, et al. Wild environment water hazards detection based on polarization information of image[J]. Opto-Electronic Engineering, 2013, 40(4): 14-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201304006.htm
|
[19] |
万剑, 赵恺, 王维锋. 基于高维特征和RBP神经网络的湿滑道路图像判别方法[J]. 交通信息与安全, 2013, 31(2): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201302010.htm
WAN Jian, ZHAO Kai, WANG Wei-feng. Classification of slippery road images based on high-dimensional features and RBP neural network[J]. Journal of Transport Information and Safety, 2013, 31(2): 32-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201302010.htm
|
[20] |
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
[21] |
沈长青, 王旭, 王冬, 等. 基于多尺度卷积类内迁移学习的列车轴承故障诊断[J]. 交通运输工程学报, 2020, 20(5): 151-164. doi: 10.19818/j.cnki.1671-1637.2020.05.012
SHEN Chang-qing, WANG Xu, WANG Dong, et al. Multi-scale convolutional intra-class transfer learning for train bearing fault diagnosis[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 151-164. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.012
|
[22] |
ZAITOUN N M, AQEL M J. Survey on image segmentation techniques[J]. Procedia Computer Science, 2015, 65: 797-806.
|
[23] |
HUANG Qing-hua, LUO Yao-zhong, ZHANG Qiang-zhi. Breast ultrasound image segmentation: a survey[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(3): 493-507.
|
[24] |
LIU Wei-bo, WANG Zi-dong, LIU Xiao-hui, et al. A survey of deep neural network architectures and their applications[J]. Neurocomputing, 2017, 234: 11-26.
|
[25] |
GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S, et al. A survey on deep learning techniques for image and video semantic segmentation[J]. Applied Soft Computing, 2018, 70: 41-65.
|
[26] |
LI J, NGUYEN C. Realtime water-hazard detection and visualisation for autonomous navigation and advanced driving assistance[C]//IEEE. 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct. New York: IEEE, 2019: 287-288.
|
[27] |
TAN Xue-feng, WANG Man-tao, HE Lin-chao, et al. Urban road water recognition based on deep learning[C]//Springer. Frontier Computing 2019. Berlin: Springer, 2020: 1387-1395.
|
[28] |
HAN Xiao-feng, NGUYEN C, YOU S, et al. Single image water hazard detection using FCN with reflection attention units[C]//Springer. European Conference on Computer Vision 2018. Berlin: Springer, 2018: 105-121.
|
[29] |
WANG L, WANG H. Water hazard detection using conditional generative adversarial network with mixture reflection attention units[J]. IEEE Access, 2019, 7: 167497-167506.
|
[30] |
QIAO Jian-jun, WU Xiao, HE Jun-yan, et al. SWNet: a deep learning based approach for splashed water detection on road[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 2020: 1-14.
|
[31] |
白岗岗, 侯精明, 韩浩, 等. 基于深度学习的道路积水智能监测方法[J]. 水资源保护, 2020, https://kns.cnki.net/kcms/detail/32.1356.TV.20200806.1036.002.html.
BAI Gang-gang, HOU Jing-ming, HAN Hao, et al. Intelligent monitoring method for road inundation based on deep learning[J]. Water Resources Protection, 2020, https://kns.cnki.net/kcms/detail/32.1356.TV.20200806.1036.002.html. (in Chinese)
|
[32] |
王海, 蔡柏湘, 蔡英凤, 等. 基于语义分割网络的路面积水与湿滑区域检测[J]. 汽车工程, 2021, 43(4): 485-491. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202104007.htm
WANG Hai, CAI Bai-xiang, CAI Ying-feng, et al. Detection of water-covered and wet areas on road pavement based on semantic segmentation network[J]. Automotive Engineering, 2021, 43(4): 485-491. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202104007.htm
|
[33] |
POHLEN T, HERMANS A, MATHIAS M, et al. Full-resolution residual networks for semantic segmentation in street scenes[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 3309-3318.
|
[34] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Springer. Medical Image Computing and Computer-Assisted Intervention 2015. Berlin: Springer, 2015: 234-241.
|
[35] |
LEE C Y, XIE S N, GALLAGHER, P W, et al. Deeply-supervised nets[J]. ArXiv, 2014: 562-570.
|
[36] |
ALOM M Z, YAKOPCIC C, HASAN, M, et al. Recurrent residual U-Net for medical image segmentation[J]. Journal of Medical Imaging, 2019, 6(1): 014006.
|
[37] |
SCHLEMPER J, OKTAY O, SCHAAP M, et al. Attention gated networks: learning to leverage salient regions in medical images[J]. Medical Image Analysis, 2019, 53: 197-207.
|
[38] |
BEHESHTI N, JOHNSSON L. Squeeze U-Net: a memory and energy efficient image segmentation network[C]//IEEE. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New York: IEEE, 2020: 1495-1504.
|
[39] |
NOH H, HONG S, HAN B. Learning deconvolution network for semantic segmentation[C]//IEEE. 2015 IEEE International Conference on Computer Vision. New York: IEEE, 2015: 1520-1528.
|
[40] |
LI Yan-wei, CHEN Xin-ze, ZHU Zheng, et al. Attention-guided unified network for panoptic segmentation[C]//IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 7019-7028.
|