Volume 21 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
ZHANG Ji-min, SU Hui, REN Qiao, LI Wei, ZHOU He-chao. Review on development and key technologies of permanent magnet synchronous traction system for rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 63-77. doi: 10.19818/j.cnki.1671-1637.2021.06.005
Citation: ZHANG Ji-min, SU Hui, REN Qiao, LI Wei, ZHOU He-chao. Review on development and key technologies of permanent magnet synchronous traction system for rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 63-77. doi: 10.19818/j.cnki.1671-1637.2021.06.005

Review on development and key technologies of permanent magnet synchronous traction system for rail transit

doi: 10.19818/j.cnki.1671-1637.2021.06.005
Funds:

National Key Research and Development Program of China 2018YFB1201603-08

National Natural Science Foundation of China 51805374

More Information
  • Author Bio:

    ZHANG Ji-min(1969-), male, professor, PhD, zjm2011@tongji.edu.cn

  • Received Date: 2021-05-29
    Available Online: 2022-02-11
  • Publish Date: 2021-12-01
  • To systematically analyze and summarize the technologies and development trend of permanent magnet traction system control, the advantages and disadvantages of using the permanent magnet synchronous motor (PMSM) as the traction motor in rail transit were introduced, and the applications of permanent magnet synchronous traction systems in at home and abroad were illustrated. The technologies those control high-power traction inverters at low switching frequencies and control permanent magnet synchronous traction motors were reviewed to analyze the design concepts and research methods of key technologies, such as the pulse width modulation strategies and field-weakening control. Investigations of recent research results were carried out to illustrate the advantages and limitations of various control methods, and the prospects and challenges of PMSM in the field of rail transit traction were predicted. Research results show that the built-in PMSMs are suitable for direct drive systems, and their small volumes and high efficiencies make them superior. A traction inverter usually adopts a hybrid pulse width modulation strategy. The asynchronous, synchronous, and single-pulse modulation are used in low frequency bands, middle frequency bands, and under square wave conditions, respectively. Improving the system's dynamic performance under special synchronous modulation and ensuring the smooth switching between different modulation methods are the most difficult aspects of traction inverter pulse width modulation technologies. The motor control strategy mainly focuses on three field-weakening control methods in high-speed operation areas, such as field-weakening control based on dual current regulators, field-weakening control with voltage vector angles, and field-weakening control under square wave conditions. Based on the previous research, future studies should include the sensorless technology, on-line fault diagnostics and prediction, and high-precision parameter identification of PMSMs, and the electromechanical coupling characteristics and short-circuit handling of traction drive systems are the key research directions in the future. 2 tabs, 16 figs, 68 refs.

     

  • loading
  • [1]
    SOONG W L, STATON D A, MILLER T J E. Design of a new axially-laminated interior permanent magnet motor[J]. IEEE Transactions on Industry Applications, 1995, 31(2): 358-367. doi: 10.1109/28.370285
    [2]
    冯江华. 轨道交通永磁电机牵引系统关键技术及发展趋势[J]. 机车电传动, 2018(6): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201806003.htm

    FENG Jiang-hua. Key technology and development trend of permanent magnet motor traction system for rail transit[J]. Electric Drive for Locomotives, 2018(6): 9-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201806003.htm
    [3]
    徐强. 永磁同步电机在轨道交通牵引系统中的应用及特点[J]. 科技信息, 2013(2): 378-379. doi: 10.3969/j.issn.1001-9960.2013.02.330

    XU Qiang. Application and characteristics of permanent magnet synchronous motor in rail transit traction system[J]. Science and Technology Information, 2013(2): 378-379. (in Chinese) doi: 10.3969/j.issn.1001-9960.2013.02.330
    [4]
    MATSUOKA K. Development trend of the permanent magnet synchronous motor for railway traction[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2007, 2(2): 154-161. doi: 10.1002/tee.20121
    [5]
    董明桂. 直接驱动式牵引电机的特点及应用[J]. 电力机车与城轨车辆, 2006, 29(2): 56-58. doi: 10.3969/j.issn.1672-1187.2006.02.021

    DONG Ming-gui. Characteristics and application of direct drivetraction motor[J]. Electric Locomotives and Mass Transit Vehicles, 2006, 29(2): 56-58. (in Chinese) doi: 10.3969/j.issn.1672-1187.2006.02.021
    [6]
    崔玲. 永磁同步牵引电机高速惰行时反电势问题的研究[D]. 北京: 北京交通大学, 2012.

    CUI Ling. Research on the back-EMF problem of permanent magnet synchronous traction motor during coasting with high speed[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese)
    [7]
    高雅, 刘卫国, 骆光照. 牵引机车用永磁同步电机断电-重投控制系统研究[J]. 电工技术学报, 2016, 31(6): 100-107, 117. doi: 10.3969/j.issn.1000-6753.2016.06.012

    GAO Ya, LIU Wei-guo, LUO Guang-zhao. Research of power down-rejoining on control system for permanent magnet synchronous motor used in traction engines[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 100-107, 117. (in Chinese) doi: 10.3969/j.issn.1000-6753.2016.06.012
    [8]
    冯江华, 桂卫华, 符敏利, 等. 铁道车辆牵引系统用永磁同步电机比较[J]. 铁道学报, 2007, 29(5): 111-116. doi: 10.3321/j.issn:1001-8360.2007.05.021

    FENG Jiang-hua, GUI Wei-hua, FU Min-li, et al. Comparison of permanent magnet synchronous motors applied to railway vehicle traction system[J]. Journal of the China Railway Society, 2007, 29(5): 111-116. (in Chinese) doi: 10.3321/j.issn:1001-8360.2007.05.021
    [9]
    柯以诺. 永磁同步电机传动系统在电动车辆上的应用[J]. 大功率变流技术, 2009(5): 31-37. doi: 10.3969/j.issn.1671-8410-B.2009.05.008

    KE Yi-nuo. Application of PMSM drive system for electric vehicle[J]. High Power Converter Technology, 2009(5): 31-37. (in Chinese) doi: 10.3969/j.issn.1671-8410-B.2009.05.008
    [10]
    高雅, 刘卫国, 骆光照. PMSM断电-重投时的冲击电流研究[J]. 电机与控制学报, 2017, 21(3): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ201703008.htm

    GAO Ya, LIU Wei-guo, LUO Guang-zhao. Research of surge current for PMSM when power down-rejoining on[J]. Electric Machines and Control, 2017, 21(3): 55-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJKZ201703008.htm
    [11]
    GEYER T. A comparison of control and modulation schemes for medium-voltage drives: emerging predictive control concepts versus PWM-based schemes[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1380-1389. doi: 10.1109/TIA.2011.2127433
    [12]
    方晓春. 城轨列车永磁同步牵引电机控制与逆变器直流侧振荡抑制研究[D]. 北京: 北京交通大学, 2016.

    FANG Xiao-chun. Permanent magnet synchronous traction motor control and inverter DC-link oscillation suppression for urban rail train[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)
    [13]
    王堃, 游小杰, 王琛琛, 等. 低开关频率下SVPWM同步调制策略比较研究[J]. 中国电机工程学报, 2015, 35(16): 4175-4183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201516022.htm

    WANG Kun, YOU Xiao-jie, WANG Chen-chen, et al. Research on synchronized SVPWM strategies under low switching frequency[J]. Proceedings of the CSEE, 2015, 35(16): 4175-4183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201516022.htm
    [14]
    NARAYANAN G, RANGANATHAN V T. Two novel synchronized bus-clamping PWM strategies based on space vector approach for high power drives[J]. IEEE Transactions on Power Electronics, 2002, 17(1): 84-93. doi: 10.1109/63.988673
    [15]
    何亚屏, 文宇良, 许峻峰, 等. 基于多模式SVPWM算法的永磁同步牵引电机弱磁控制策略[J]. 电工技术学报, 2012, 27(3): 92-99. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201203015.htm

    HE Ya-ping, WEN Yu-liang, XU Jun-feng, et al. High-power permanent magnet flux-weakening strategy based on multi-mode SVPWM[J]. Transactions of China Electrotechnical Society, 2012, 27(3): 92-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201203015.htm
    [16]
    王琛琛, 王堃, 游小杰, 等. 低开关频率下双定子感应电机SVPWM同步调制策略研究[J]. 中国电机工程学报, 2017, 37(13): 3883-3891. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201713025.htm

    WANG Chen-chen, WANG Kun, YOU Xiao-jie, et al. Research on the synchronized SVPWM strategies under low switching frequency for dual stator induction machines[J]. Proceedings of the CSEE, 2017, 37(13): 3883-3891. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201713025.htm
    [17]
    李泽. 全调制度范围牵引逆变器SVPWM技术研究[D]. 大连: 大连理工大学, 2018.

    LI Ze. SVPWM strategy for traction inverter in entire modulation range[D]. Dalian: Dalian University of Technology, 2018. (in Chinese)
    [18]
    朱龙胜, 方晓春, 林飞, 等. 一种基于计算开关角的SVPWM同步调制策略[J]. 中国电机工程学报, 2018, 38(13): 3930-3938. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201813023.htm

    ZHU Long-sheng, FANG Xiao-chun, LIN Fei, et al. A synchronized SVPWM strategy based on calculating switching angles[J]. Proceedings of the CSEE, 2018, 38(13): 3930-3938. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201813023.htm
    [19]
    郑志军. 电力牵引永磁同步电机矢量控制与调制算法研究[D]. 成都: 西南交通大学, 2016.

    ZHENG Zhi-jun. PMSM vector control and modulation algorithm for electric traction[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
    [20]
    原佳亮. 用于永磁同步牵引电机的优化脉宽调制方法研究[D]. 北京: 北京交通大学, 2014.

    YUAN Jia-liang. Research on the optimal pulsewidth modulation for permanent magnet synchronous traction motor[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese)
    [21]
    郭新华, 王永兴, 赵峰, 等. 基于SHEPWM的中压大功率牵引永磁同步电机两电平控制[J]. 电工技术学报, 2012, 27(11): 76-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201211011.htm

    GUO Xin-hua, WANG Yong-xing, ZHAO Feng, et al. Two level control technology of PMSM used in medium voltage high power traction system based on SHEPWM[J]. Transactions of China Electrotechnical Society, 2012, 27(11): 76-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201211011.htm
    [22]
    齐昕, 周珂, 王长松, 等. 中高功率交流电机逆变器的低开关频率控制策略综述[J]. 中国电机工程学报, 2015, 35(24): 6445-6458. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201524023.htm

    QI Xin, ZHOU Ke, WANG Chang-song, et al. Control strategies for medium and high power AC machine inverters at low switching frequencies—an overview[J]. Proceedings of the CSEE, 2015, 35(24): 6445-6458. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201524023.htm
    [23]
    费万民, 张艳莉, 阮新波, 等. 三电平逆变器SHEPWM非线性方程组的求解[J]. 中国电机工程学报, 2008, 28(6): 62-68. doi: 10.3321/j.issn:0258-8013.2008.06.011

    FEI Wan-min, ZHANG Yan-li, RUAN Xin-bo, et al. Solutions to the SHEPWM non-linear equations for three-level voltage inverters[J]. Proceedings of the CSEE, 2008, 28(6): 62-68. (in Chinese) doi: 10.3321/j.issn:0258-8013.2008.06.011
    [24]
    李治典, 周秦英, 李宏, 等. 实时求解特定消谐方程组的新算法[J]. 西北工业大学学报, 2004, 22(1): 37-40. doi: 10.3969/j.issn.1000-2758.2004.01.009

    LI Zhi-dian, ZHOU Qin-ying, LI Hong, et al. A novel algorithm for real-time solution of nonlinear surmount SHET equations[J]. Journal of Northwestern Polytechnical University, 2004, 22(1): 37-40. (in Chinese) doi: 10.3969/j.issn.1000-2758.2004.01.009
    [25]
    谢运祥, 周炼, 彭宏. 逆变器消谐PWM模型的同伦算法研究[J]. 中国电机工程学报, 2000, 20(10): 23-36. doi: 10.3321/j.issn:0258-8013.2000.10.006

    XIE Yun-xiang, ZHOU Lian, PENG Hong. Homopoty algorithm research of the inverter harmonic elimination PWM model[J]. Proceedings of the CSEE, 2000, 20(10): 23-36. (in Chinese) doi: 10.3321/j.issn:0258-8013.2000.10.006
    [26]
    张永昌, 赵争鸣. 三电平逆变器SHEPWM多组解计算方法[J]. 电工技术学报, 2007, 22(1): 74-78. doi: 10.3321/j.issn:1000-6753.2007.01.013

    ZHANG Yong-chang, ZHAO Zheng-ming. Multiple solutions for selective harmonic eliminated PWM applied to three-level inverter[J]. Transactions of China Electrotechnical Society, 2007, 22(1): 74-78. (in Chinese) doi: 10.3321/j.issn:1000-6753.2007.01.013
    [27]
    DU Zhong, TOLBERT L M, CHIASSON J N, et al. Reduced switching-frequency active harmonic elimination for multilevel converters[J]. IEEE Transactions on Industrial Electronics, 2008, 55(4): 1761-1770. doi: 10.1109/TIE.2008.917068
    [28]
    王群京, 胡存刚, 李国丽. 基于遗传算法的三电平逆变器SHEPWM方法的研究[J]. 中国科学技术大学学报, 2009, 39(8): 848-852. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJD200908011.htm

    WANG Qun-jing, HU Cun-gang, LI Guo-li. Research on the SHEPWM technique applied to three-level NPC inverter based on genetic algorithm[J]. Journal of University of Science and Technology of China, 2009, 39(8): 848-852. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJD200908011.htm
    [29]
    BOWES S R, HOLLIDAY D. Optimal regular-sampled PWM inverter control techniques[J]. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1547-1559. doi: 10.1109/TIE.2007.894767
    [30]
    郝君, 张国山, 胡伟. 基于神经网络和对称秩的特定谐波消除开关角生成算法[J]. 电力系统自动化, 2019, 43(18): 162-168. doi: 10.7500/AEPS20190102005

    HAO Jun, ZHANG Guo-shan, HU Wei. Switching angle generation algorithm for selective harmonic elimination based on neural network and symmetric rank[J]. Automation of Electric Power Systems, 2019, 43(18): 162-168. (in Chinese) doi: 10.7500/AEPS20190102005
    [31]
    周明磊, 游小杰, 王琛琛, 等. 电流谐波最小PWM开关角的计算及谐波特性分析[J]. 中国电机工程学报, 2014, 34(15): 2362-2370. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201415006.htm

    ZHOU Ming-lei, YOU Xiao-jie, WANG Chen-chen, et al. Switching angle calculation and harmonic analysis of current harmonic minimum PWM[J]. Proceedings of the CSEE, 2014, 34(15): 2362-2370. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201415006.htm
    [32]
    董侃. 基于电流谐波优化的混合脉宽调制策略[J]. 电工技术学报, 2017, 32(20): 179-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201720021.htm

    DONG Kan. Hybrid pulse width modulation strategy based on current harmonic minimum technique[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 179-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201720021.htm
    [33]
    HOLTZ J, BEYER B. The trajectory tracking approach—a new method for minimum distortion PWM in dynamic high-power drives[J]. IEEE Transactions on Industry Applications, 1994, 30(4): 1048-1057. doi: 10.1109/28.297922
    [34]
    HOLTZ J, BEYER B. Fast current trajectory tracking control based on synchronous optimal pulsewidth modulation[J]. IEEE Transactions on Industry Applications, 1995, 31(5): 1110-1120. doi: 10.1109/28.464526
    [35]
    HOLTZ J, OIKONOMOU N. Synchronous optimal pulsewidth modulation and stator flux trajectory control for medium-voltage drives[J]. IEEE Transactions on Industry Applications, 2007, 43(2): 600-608. doi: 10.1109/TIA.2006.889893
    [36]
    方晓春, 原佳亮, 赵冬, 等. 基于永磁同步电机定子磁链轨迹跟踪的中间60°同步调制动态性能优化[J]. 电工技术学报, 2015, 30(10): 108-114. doi: 10.3969/j.issn.1000-6753.2015.10.016

    FANG Xiao-chun, YUAN Jia-liang, ZHAO Dong, et al. The central 60° synchronous modulation based on permanent magnet synchronous motor stator flux trajectory control[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 108-114. (in Chinese) doi: 10.3969/j.issn.1000-6753.2015.10.016
    [37]
    TAKAHASHI I, OHMORI Y. High-performance direct torque control of an induction motor[J]. IEEE Transactions on Industry Applications, 1989, 25(2): 257-264. doi: 10.1109/28.25540
    [38]
    MERZOUG M S, NACERI F. Comparison of field-oriented control and direct torque control for permanent magnet synchronous motor (PMSM)[J]. International Journal of Electrical and Computer Engineering, 2008, 2(9): 1797-1802. https://www.researchgate.net/publication/325896460_Comparison_of_Field_Oriented_Control_and_Direct_Torque_Control
    [39]
    李长红, 陈明俊, 吴小役. PMSM调速系统中最大转矩电流比控制方法的研究[J]. 中国电机工程学报, 2005, 25(21): 169-174. doi: 10.3321/j.issn:0258-8013.2005.21.030

    LI Chang-hong, CHEN Ming-jun, WU Xiao-yi. Study of a maximum ratio of torque to current control method for PMSM[J]. Proceedings of the CSEE, 2005, 25(21): 169-174. (in Chinese) doi: 10.3321/j.issn:0258-8013.2005.21.030
    [40]
    KIM Y S, SUL S K. Torque control strategy of an IPMSM considering the flux variation of the permanent magnet[C]//IEEE. 2007 IEEE Industry Applications Annual Meeting. New York: IEEE, 2007: 1301-1307.
    [41]
    KIM H, HARTWIG J, LORENZ R D. Using on-line parameter estimation to improve efficiency of IPM machine drives[C]//IEEE. Proceedings of the 33rd Annual IEEE Power Electronics Specialists Conference. New York: IEEE, 2002: 815-820.
    [42]
    DIANOV A, YOUNG K K, SANG J L, et al. Robust self-tuning MTPA algorithm for IPMSM drives[C]//IEEE. Proceedings of the 34th Annual Conference of IEEE Industrial Electronics. New York: IEEE, 2008: 1355-1360.
    [43]
    KIM S, YOON Y D, SUL S K, et al. Maximum torque per ampere (MTPA) control of an IPM machine based on signal injection considering inductance saturation[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 488-497. doi: 10.1109/TPEL.2012.2195203
    [44]
    XU Long-ya, YE Lu-rong, ZHEN Li, et al. A new design concept of permanent magnet machine for flux weakening operation[J]. IEEE Transactions on Industry Applications, 1995, 31(2): 373-378. doi: 10.1109/28.370287
    [45]
    AMARA Y, VIDO L, GABSI M, et al. Hybrid excitation synchronous machines: energy-efficient solution for vehicles propulsion[J]. IEEE Transactions on Vehicular Technology, 2009, 58(5): 2137-2149. doi: 10.1109/TVT.2008.2009306
    [46]
    PELLEGRINO G, ARMANDO E, GUGLIELMI P. Direct flux field-oriented control of IPM drives with variable DC link in the field-weakening region[J]. IEEE Transactions on Industry Applications, 2009, 45(5): 1619-1627. doi: 10.1109/TIA.2009.2027167
    [47]
    朱磊, 温旭辉, 赵峰, 等. 永磁同步电机弱磁失控机制及其应对策略研究[J]. 中国电机工程学报, 2011, 31(18): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201118012.htm

    ZHU Lei, WEN Xu-hui, ZHAO Feng, et al. Control policies to prevent PMSMs from losing control under field-weakening operation[J]. Proceedings of the CSEE, 2011, 31(18): 67-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201118012.htm
    [48]
    PAN C T, SUE S M. A linear maximum torque per ampere control for IPMSM drives over full-speed range[J]. IEEE Transactions on Energy Conversion, 2005, 20(2): 359-366. doi: 10.1109/TEC.2004.841517
    [49]
    FU Z X. Pseudo constant power times speed operation in the field weakening region of IPM synchronous machines[C]//IEEE. Proceedings of the 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference. New York: IEEE, 2003: 373-379.
    [50]
    KIM J M, SUL S K. Speed control of interior permanent magnet synchronous motor drive for the flux weakening operation[J]. IEEE Transactions on Industry Applications, 1997, 33(1): 43-48. doi: 10.1109/28.567075
    [51]
    MORIMOTO S, SANADA M, TAKEDA Y. Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator[J]. IEEE Transactions on Industry Applications, 1994, 30(4): 920-926. doi: 10.1109/28.297908
    [52]
    OTTOSSON J, ALAKULA M. A compact field weakening controller implementation[C]//IEEE. Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion. New York: IEEE, 2006: 696-700.
    [53]
    YOON Y D, LEE W J, SUL S K. New flux weakening control for high saliency interior permanent magnet synchronous machine without any tables[C]//IEEE. Proceedings of the 2007 European Conference on Power Electronics and Applications. New York: IEEE, 2007: 1-7.
    [54]
    ZHANG Yuan, XU Long-ya, GVVEN M K, et al. Experimental verification of deep field weakening operation of a 50-kW IPM machine by using single current regulator[J]. IEEE Transactions on Industry Applications, 2011, 47(1): 128-133. doi: 10.1109/TIA.2010.2091478
    [55]
    CHI Song, XU Long-ya, ZHANG Zheng. Efficiency-optimized flux-weakening control of PMSM incorporating speed regulation[C]//IEEE. 2007 IEEE Power Electronics Specialists Conference. New York: IEEE, 2007: 1627-1633.
    [56]
    KWON Y C, KIM S, SUL S K. Voltage feedback current control scheme for improved transient performance of permanent magnet synchronous machine drives[J]. IEEE Transactions on Industrial Electronics, 2011, 59(9): 3373-3382.
    [57]
    YOON Y D, SUL S K. New flux weakening control for surface mounted permanent magnet synchronous machine using gradient descent method[C]//IEEE. Proceedings of the 7th International Conference on Power Electronics. New York: IEEE, 2008: 1208-1212.
    [58]
    李珂, 顾欣, 刘旭东, 等. 基于梯度下降法的永磁同步电机单电流弱磁优化控制[J]. 电工技术学报, 2016, 31(15): 8-15. doi: 10.3969/j.issn.1000-6753.2016.15.002

    LI Ke, GU Xin, LIU Xu-dong, et al. Optimized flux weakening control of IPMSM based on gradient descent method with single current regulator[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 8-15. (in Chinese) doi: 10.3969/j.issn.1000-6753.2016.15.002
    [59]
    盛义发, 喻寿益, 桂卫华, 等. 轨道车辆用永磁同步电机系统弱磁控制策略[J]. 中国电机工程学报, 2010, 30(9): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201009012.htm

    SHENG Yi-fa, YU Shou-yi, GUI Wei-hua, et al. Field weakening operation control strategies of permanent magnet synchronous motor for railway vehicles[J]. Proceedings of the CSEE, 2010, 30(9): 74-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201009012.htm
    [60]
    XU Long-ya, ZHANG Yuan, GVVEN M K. A new method to optimize q-axis voltage for deep flux weakening control of IPM machines based on single current regulator[C]//IEEE. Proceedings of the 2008 International Conference on Electrical Machines and Systems. New York: IEEE, 2008: 2750-2754.
    [61]
    张梓绥. 轨道交通中永磁同步电机控制关键技术研究[D]. 北京: 北京交通大学, 2019.

    ZHANG Zi-sui. Research on technologies of PMSM control in rail transit[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
    [62]
    方晓春, 胡太元, 林飞, 等. 基于交直轴电流耦合的单电流调节器永磁同步电机弱磁控制[J]. 电工技术学报, 2015, 30(2): 140-147. doi: 10.3969/j.issn.1000-6753.2015.02.019

    FANG Xiao-chun, HU Tai-yuan, LIN Fei. Single current regulator flux-weakening control of PMSM based on current cross-coupling effect[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 140-147. (in Chinese) doi: 10.3969/j.issn.1000-6753.2015.02.019
    [63]
    张梓绥, 王琛琛, 游小杰, 等. 基于单Q轴电流调节器的永磁同步电机电流轨迹控制[J]. 电工技术学报, 2018, 33(24): 5779-5788. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201824016.htm

    ZHANG Zi-sui, WANG Chen-chen, YOU Xiao-jie, et al. Current locus control of permanent magnet synchronous motor based on single Q-axis current regulator flux-weakening method[J]. Transactions of China Electrotechnical Society, 2018, 33(24): 5779-5788. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201824016.htm
    [64]
    文宇良, 郑汉锋, 黄佳德, 等. 永磁同步电机方波控制技术探讨[J]. 机车电传动, 2018(6): 26-32, 37. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201806007.htm

    WEN Yu-liang, ZHENG Han-feng, HUANG Jia-de, et al. Discussion of square wave control technology for permanent magnet synchronous motor[J]. Electric Drive for Locomotives, 2018(6): 26-32, 37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201806007.htm
    [65]
    康劲松, 崔宇航, 王硕. 基于电流快速响应的永磁同步电机六拍运行控制策略[J]. 电工技术学报, 2016, 31(1): 165-174. doi: 10.3969/j.issn.1000-6753.2016.01.020

    KANG Jin-song, CUI Yu-hang, WANG Shuo. The current rapid response control strategy for the six-step operation of permanent magnet synchronous motors[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 165-174. (in Chinese) doi: 10.3969/j.issn.1000-6753.2016.01.020
    [66]
    JUNG S, PARK J, HA J I. Variable time step control with synchronous PWM in flux weakening region of PMSM[C]//IEEE. Proceedings of the 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific). New York: IEEE, 2016: 364-369.
    [67]
    PARK J, JUNG S, HA J I. Variable time step control for six-step operation in surface-mounted permanent magnet machine drives[J]. IEEE Transactions on Power Electronics, 2018, 33(2): 1501-1513. doi: 10.1109/TPEL.2017.2676703
    [68]
    KWON Y C, KIM S, SUL S K. Six-step operation of PMSM with instantaneous current control[J]. IEEE Transactions on Industry Applications, 2014, 50(4): 2614-2625. doi: 10.1109/TIA.2013.2296652
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2588) PDF downloads(287) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return