Citation: | NA Jing-xin, WANG Guang-bin, ZHUANG Wei-min, MU Wen-long, XU Qian-hui. Review on strength and environmental durability of composite adhesive structures[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 78-93. doi: 10.19818/j.cnki.1671-1637.2021.06.006 |
[1] |
孙中雷, 张国凡. 复合材料胶接接头强度设计研究[J]. 计算机仿真, 2017, 34(3): 46-50. doi: 10.3969/j.issn.1006-9348.2017.03.011
SUN Zhong-lei, ZHANG Guo-fan. Strength design of adhesively bonded composite double-lap joints[J]. Computer Simulation, 2017, 34(3): 46-50. (in Chinese) doi: 10.3969/j.issn.1006-9348.2017.03.011
|
[2] |
纪俊栋. 车身胶粘结构断裂失效准则改进研究[D]. 长春: 吉林大学, 2019.
JI Jun-dong. Research on improvement of fracture failure criterion of body adhesion[D]. Changchun: Jilin University, 2019. (in Chinese)
|
[3] |
BANEA M D, DA SILVA L F M. Mechanical characterization of flexible adhesives[J]. The Journal of Adhesion, 2009, 85(4/5): 261-285. doi: 10.1080/00218460902881808
|
[4] |
BANEA M D, DA SILVA L F M. Adhesively bonded joints in composite materials: an overview[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2009, 223(1): 1-18. doi: 10.1243/14644207JMDA219
|
[5] |
GALVEZ P, ABENOJAR J, MARTINEZ M A. Durability of steel-CFRP structural adhesive joints with polyurethane adhesives[J]. Composites Part B: Engineering, 2019, 165(11): 1-9. https://www.sciencedirect.com/science/article/pii/S1359836818329159
|
[6] |
COSTA M, VIANA G, DA SILVA L F M, et al. Effect of humidity on the mechanical properties of adhesively bonded aluminium joints[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2018, 232(9): 733-742. doi: 10.1177/1464420716645263
|
[7] |
AVENDAÑO R, CARBAS R J C, MARQUES E A S, et al. Effect of temperature and strain rate on single lap joints with dissimilar lightweight adherends bonded with an acrylic adhesive[J]. Composite Structures, 2016, 152: 34-44. doi: 10.1016/j.compstruct.2016.05.034
|
[8] |
POPINEAU S, RONDEAU-MOURO C, SULPICE-GAILLET C, et al. Free/bound water absorption in an epoxy adhesive[J]. Polymer, 2005, 46(24): 10733-10740. doi: 10.1016/j.polymer.2005.09.008
|
[9] |
BUCH X, SHANAHAN M E R. Influence of the gaseous environment on the thermal degradation of a structural epoxy adhesive[J]. Journal of Applied Polymer Science, 2000, 76(7): 987-992. doi: 10.1002/(SICI)1097-4628(20000516)76:7<987::AID-APP1>3.0.CO;2-1
|
[10] |
ANDERSON B J. Thermal stability of high temperature epoxy adhesives by thermogravimetric and adhesive strength measurements[J]. Polymer Degradation and Stability, 2011, 96(10): 1874-1881. doi: 10.1016/j.polymdegradstab.2011.07.010
|
[11] |
HESHMATI M, HAGHANI R, AL-EMRANI M. Durability of bonded FRP-to-steel joints: effects of moisture, de-icing salt solution, temperature and FRP type[J]. Composites Part B: Engineering, 2017, 119: 153-167. doi: 10.1016/j.compositesb.2017.03.049
|
[12] |
MAGGANA C, PISSIS P. Water sorption and diffusion studies in an epoxy resin system[J]. Journal of Polymer Science Part B: Polymer Physics, 1999, 37(11): 1165-1182. doi: 10.1002/(SICI)1099-0488(19990601)37:11<1165::AID-POLB11>3.0.CO;2-E
|
[13] |
NGUYEN T C, BAI Y, ZHAO X L, et al. Effects of ultraviolet radiation and associated elevated temperature on mechanical performance of steel/CFRP double strap joints[J]. Composite Structures, 2012, 94(12): 3563-3573. doi: 10.1016/j.compstruct.2012.05.036
|
[14] |
黄亚江, 叶林, 廖霞, 等. 复杂条件下高分子材料老化规律、寿命预测与防治研究新进展[J]. 高分子通报, 2017(10): 52-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GFZT201710007.htm
HUANG Ya-jiang, YE Lin, LIAO Xia, et al. The degradation behavior, service lifetime prediction and stabilization strategy of polymeric materials under complex condition[J]. Chinese Polymer Bulletin, 2017(10): 52-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GFZT201710007.htm
|
[15] |
BUDHE S, BANEA M D, DE BARROS S, et al. An updated review of adhesively bonded joints in composite materials[J]. International Journal of Adhesion and Adhesives, 2017, 72: 30-42. doi: 10.1016/j.ijadhadh.2016.10.010
|
[16] |
DEMUTS E, SHYPRYKEVICH P. Accelerated environmental testing of composites[J]. Composites, 1984, 15(1): 25-31. doi: 10.1016/0010-4361(84)90957-1
|
[17] |
HE Xiao-cong. A review of finite element analysis of adhesively bonded joints[J]. International Journal of Adhesion and Adhesives, 2011, 31(4): 248-264. doi: 10.1016/j.ijadhadh.2011.01.006
|
[18] |
PETHRICK R A. Design and ageing of adhesives for structural adhesive bonding—a review[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2015, 229(5): 349-379. doi: 10.1177/1464420714522981
|
[19] |
慕文龙, 那景新, 秦国锋, 等. 交变载荷对CFRP复合材料-铝合金粘接接头剩余强度的影响[J]. 复合材料学报, 2019, 36(5): 1124-1131. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201905007.htm
MU Wen-long, NA Jing-xin, QIN Guo-feng, et al. Effect of alternating load on residual strength of adhesively bonded CFRP composite-aluminum alloy joints[J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1124-1131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201905007.htm
|
[20] |
张军, 王增威, 杨军, 等. EP胶粘接剂-不锈钢对接粘接结构的疲劳试验与理论研究[J]. 中国胶粘接剂, 2015, 24(10): 1-7. http://www.cnki.com.cn/Article/CJFDTotal-GXLJ201510018.htm
ZHANG Jun, WANG Zeng-wei, YANG Jun, et al. Fatigue experiment and theoretical investigation of epoxy resin adhesive-stainless steel butt joint bonding structure[J]. China Adhesives, 2015, 24(10): 1-7. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GXLJ201510018.htm
|
[21] |
周森, 何晓聪, 王玉奇, 等. 5052铝合金胶接接头静强度及疲劳性能研究[J]. 材料导报, 2013, 27(18): 104-107. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201318029.htm
ZHOU Sen, HE Xiao-cong, WANG Yu-qi, et al. Research on static strength and fatigue property of bonded joint in 5052 aluminum alloy[J]. Materials Review, 2013, 27(18): 104-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201318029.htm
|
[22] |
常保华, 史耀武, 卢良清. 胶焊搭接接头的应力分布和疲劳行为研究[J]. 机械工程学报, 2000, 36(2): 106-110. doi: 10.3321/j.issn:0577-6686.2000.02.027
CHANG Bao-hua, SHI Yao-wu, LU Liang-qing, et al. Studies on stress distribution and fatigue behavior of weldbonded lap shear joints[J]. Chinese Journal of Mechanical Engineering, 2000, 36(2): 106-110. (in Chinese) doi: 10.3321/j.issn:0577-6686.2000.02.027
|
[23] |
郭岗, 王佳茜, 李沙. 厚复合材料层压板胶粘接头疲劳性能及局部应力研究[J]. 建筑机械, 2015(3): 67-71, 74. doi: 10.3969/j.issn.1001-1366.2015.03.017
GUO Gang, WANG Jia-qian, LI Sha, et al. Local stress analysis of fatigue performance of adhesively bonded thick composite laminates[J]. Construction Machinery, 2015(3): 67-71, 74. (in Chinese) doi: 10.3969/j.issn.1001-1366.2015.03.017
|
[24] |
ALTAN G M, TOPÇU Η Ç. The effects of the butterfly joints on failure loads and fatigue performance of composite structures[J]. Ence and Engineering of Composite Materials, 2010, 17(3): 199-212. doi: 10.1515/SECM.2010.17.3.199
|
[25] |
KHALILI S M R, SHOKUHFAR A, HOSEINI S D, et al. Experimental study of the influence of adhesive reinforcement in lap joints for composite structures subjected to mechanical loads[J]. International Journal of Adhesion and Adhesives, 2008, 28(8): 436-444. doi: 10.1016/j.ijadhadh.2008.04.009
|
[26] |
HESHMATI M, HAGHANI R, AL-EMRANI M. Environmental durability of adhesively bonded FRP/steel joints in civil engineering applications: state of the art[J]. Composites Part B: Engineering, 2015, 81: 259-275. doi: 10.1016/j.compositesb.2015.07.014
|
[27] |
ISHⅡ K, IMANAKA M, NAKAYAMA H, et al. Fatigue failure criterion of adhesively bonded CFRP/metal joints under multiaxial stress conditions[J]. Composites Part A: Applied Science and Manufacturing, 1998, 29(4): 415-422. doi: 10.1016/S1359-835X(97)00096-1
|
[28] |
YANG Zhao-jun, ZHANG Kai-fu, MA Yan-an, et al. Orthogonal test research on the effect of curing technology on the fatigue life of adhesive bonding of CFRP and aluminum alloy[J]. Advanced Materials Research, 2011, 181-182: 534-539. doi: 10.4028/www.scientific.net/AMR.181-182.534
|
[29] |
MARQUES E A S, DA SILVA L F M, BANEA M D, et al. Adhesive joints for low- and high-temperature use: an overview[J]. The Journal of Adhesion, 2015, 91(7): 556-585. doi: 10.1080/00218464.2014.943395
|
[30] |
BANEA M D, DA SILVA L F M. The effect of temperature on the mechanical properties of adhesives for the automotive industry[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2010, 224(2): 51-62. doi: 10.1243/14644207JMDA283
|
[31] |
NGUYEN T C, BAI Yu, ZHAO Xiao-ling, et al. Mechanical characterization of steel/CFRP double strap joints at elevated temperatures[J]. Composite Structures, 2011, 93(6): 1604-1612. doi: 10.1016/j.compstruct.2011.01.010
|
[32] |
AL-SHAWAF A K. Characterization of bonding behavior between wet lay-up carbon fibre reinforced polymer and steel plates in double-strap joints under extreme environmental temperatures[J]. EGU General Assembly, 2017, DOI:https://doi.org/ 10.4225/03/587d4a58366ad.
|
[33] |
AL-SHAWAF A, AL-MAHAIDI R, ZHAO X L. Effect of elevated temperature on bond behaviour of high modulus CFRP/steel double-strap joints[J]. Australian Journal of Structural Engineering, 2009, 10(1): 63-74. doi: 10.1080/13287982.2009.11465033
|
[34] |
ZHANG Y, VASSILOPOULOS A P, KELLER T. Effects of low and high temperatures on tensile behavior of adhesively-bonded GFRP joints[J]. Composite Structures, 2010, 92(7): 1631-1639. doi: 10.1016/j.compstruct.2009.11.028
|
[35] |
GORUGANTHU S, ELWELL J, RAMASETTY A, et al. Characterization and modeling of the effect of environmental degradation on interlaminar shear strength of carbon/epoxy composites[J]. Polymers and Polymer Composites, 2008, 16(3): 165-179. doi: 10.1177/096739110801600301
|
[36] |
CAO Sheng-hu, WU Zhi-shen, WANG Xin. Tensile properties of CFRP and hybrid FRP composites at elevated temperatures[J]. Journal of Composite Materials, 2009, 43(4): 315-330. doi: 10.1177/0021998308099224
|
[37] |
NARDONE F, DI LUDOVICO M, DE CASO Y BASALO F J, et al. Tensile behavior of epoxy based FRP composites under extreme service conditions[J]. Composites Part B: Engineering, 2012, 43(3): 1468-1474. doi: 10.1016/j.compositesb.2011.08.042
|
[38] |
WANG K, YOUNG B, SMITH S T. Mechanical properties of pultruded carbon fibre-reinforced polymer (CFRP) plates at elevated temperatures[J]. Engineering Structures, 2011, 33(7): 2154-2161. doi: 10.1016/j.engstruct.2011.03.006
|
[39] |
范以撒. 温度湿度对车用聚氨酯粘接剂静态强度的影响研究[D]. 长春: 吉林大学, 2018.
FAN Yi-sa. Research on the effect of temperature and humidity on static strength of automotive polyurethane adhesive[D]. Changchun: Jilin University, 2018. (in Chinese)
|
[40] |
秦国锋. 温湿老化对车用CFRP/铝合金粘接接头静态失效的影响[D]. 长春: 吉林大学, 2018.
QIN Guo-feng. Effects of temperature and humidity aging on the static failure of adhesively bonded CFRP/aluminium alloy joints for automotive applications[D]. Changchun: Jilin University, 2018. (in Chinese)
|
[41] |
游敏, 郑小玲, 郑勇. 金属胶接接头的内应力及其消除[J]. 中国胶粘剂, 1996, 5(3): 26-28, 42. https://www.cnki.com.cn/Article/CJFDTOTAL-GXLJ199603009.htm
YOU Min, ZHENG Xiao-ling, ZHENG Yong, et al. Analysis on the internal stress in the metal-to-metal adhesion joints[J]. China Adhesives, 1996, 5(3): 26-28, 42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXLJ199603009.htm
|
[42] |
NA Jing-xin, LIU Yu, WANG Yan-wu, et al. Effect of temperature on the joints strength of an automotive polyurethane adhesive[J]. The Journal of Adhesion, 2016, 92(1): 52-64. doi: 10.1080/00218464.2014.996634
|
[43] |
NA Jing-xin, MU Wen-long, QIN Guo-feng, et al. Effect of temperature on the mechanical properties of adhesively bonded basalt FRP-aluminum alloy joints in the automotive industry[J]. International Journal of Adhesion and Adhesives, 2018, 85: 138-148. doi: 10.1016/j.ijadhadh.2018.05.027
|
[44] |
YU J H, GUO S, DILLARD D A. Bimaterial curvature measurements for the CTE of adhesives: optimization, modeling, and stability[J]. Journal of Adhesion Science and Technology, 2003, 17(2): 149-164. doi: 10.1163/156856103762301970
|
[45] |
郑小玲, 魏晓红, 游敏, 等. 单搭接接头胶层中的温度应变研究[J]. 三峡大学学报(自然科学版), 2003, 25(2): 111-113. https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200302005.htm
ZHENG Xiao-ling, WEI Xiao-hong, YOU Min, et al. Effect of environmental temperature on strain in adhesive layer of single lap joint[J]. Journal of China Three Gorges University(Natural Sciences), 2003, 25(2): 111-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHYC200302005.htm
|
[46] |
ZHANG A-ying, LU Hai-bao, ZHANG Dong-xing. Synergistic effect of cyclic mechanical loading and moisture absorption on the bending fatigue performance of carbon/epoxy composites[J]. Journal of Materials Science, 2014, 49(1): 314-320. doi: 10.1007/s10853-013-7707-9
|
[47] |
PILLAY S, VAIDYA U K, JANOWSKI G M. Effects of moisture and UV exposure on liquid molded carbon fabric reinforced nylon 6 composite laminates[J]. Composites Science and Technology, 2009, 69(6): 839-846. doi: 10.1016/j.compscitech.2008.03.021
|
[48] |
ZHENG Q, MORGAN R J. Synergistic thermal-moisture damage mechanisms of epoxies and their carbon fiber composites[J]. Journal of Composite Materials, 1993, 27(15): 1465-1478. doi: 10.1177/002199839302701503
|
[49] |
MOY P, KARASZ F E. Epoxy-water interactions[J]. Polymer Engineering and Science, 1980, 20(4): 315-319. doi: 10.1002/pen.760200417
|
[50] |
SUGIMAN S, CROCOMBE A D, ASCHROFT I A. Experimental and numerical investigation of the static response of environmentally aged adhesively bonded joints[J]. International Journal of Adhesion and Adhesives, 2013, 40: 224-237. doi: 10.1016/j.ijadhadh.2012.08.007
|
[51] |
XIAO G Z, SHANAHAN M E R. Irreversible effects of hygrothermal aging on DGEBA/DDA epoxy resin[J]. Journal of Applied Polymer Science, 1998, 69(2): 363-369. doi: 10.1002/(SICI)1097-4628(19980711)69:2<363::AID-APP18>3.0.CO;2-X
|
[52] |
ALMUDAIHESH F, HOLFORD K, PULLIN R, et al. The influence of water absorption on unidirectional and 2D woven CFRP composites and their mechanical performance[J]. Composites Part B: Engineering, 2020, 182: 107626. doi: 10.1016/j.compositesb.2019.107626
|
[53] |
VANLANDINGHAM M R, EDULJEE R F, GILLESPIE J W. Moisture diffusion in epoxy systems[J]. Journal of Applied Polymer Science, 1999, 71(5): 787-798. doi: 10.1002/(SICI)1097-4628(19990131)71:5<787::AID-APP12>3.0.CO;2-A
|
[54] |
MUBASHAR A, ASHCROFT I A. Comparison of cohesive zone elements and smoothed particle hydrodynamics for failure prediction of single lap adhesive joints[J]. The Journal of Adhesion, 2017, 93(6): 444-460. doi: 10.1080/00218464.2015.1081819
|
[55] |
CARTER H G, KIBLER K G. Langmuir-type model for anomalous moisture diffusion in composite resins[J]. Journal of Composite Materials, 1978, 12(2): 118-131. doi: 10.1177/002199837801200201
|
[56] |
ALMEIDA J H S, SOUZA S D B, BOTELHO E C, et al. Carbon fiber-reinforced epoxy filament-wound composite laminates exposed to hygrothermal conditioning[J]. Journal of Materials Science, 2016, 51(9): 4697-4708. doi: 10.1007/s10853-016-9787-9
|
[57] |
SHOKRIEH M M, BAYAT A. Effects of ultraviolet radiation on mechanical properties of glass/polyester composites[J]. Journal of Composite Materials, 2007, 41(20): 2443-2455. doi: 10.1177/0021998307075441
|
[58] |
LARSSON F. The effect of ultraviolet light on mechanical properties of kevlar 49 composites[J]. Journal of Reinforced Plastics and Composites, 1986, 5(1): 19-22. doi: 10.1177/073168448600500103
|
[59] |
CHIN J W. Durability of composites exposed to ultraviolet radiation[J]. Durability of Composites for Civil Structural Applications, 2007(1): 80-97. https://www.sciencedirect.com/science/article/pii/B9781845690359500050
|
[60] |
NGUYEN T C, BAI Yu, ZHAO Xiao-ling, et al. Curing effects on steel/CFRP double strap joints under combined mechanical load, temperature and humidity[J]. Construction and Building Materials, 2013, 40(3): 899-907. https://www.sciencedirect.com/science/article/pii/S0950061812008628
|
[61] |
SZÉPE F. Strength of adhesive-bonded lap joints with respect to change of temperature and fatigue[J]. Experimental Mechanics, 1966, 6(5): 280-286. doi: 10.1007/BF02327312
|
[62] |
HARRIS J A, FAY P A. Fatigue life evaluation of structural adhesives for automative applications[J]. International Journal of Adhesion and Adhesives, 1992, 12(1): 9-18. doi: 10.1016/0143-7496(92)90003-E
|
[63] |
ASHCROFT I A, HUGHES D J, SHAW S J, et al. Effect of temperature on the quasi-static strength and fatigue resistance of bonded composite double lap joints[J]. The Journal of Adhesion, 2001, 75(1): 61-88. doi: 10.1080/00218460108029594
|
[64] |
WAHAB M M A, ASHCROFT I A, CROCOMBE A D, et al. The effect of environment on the fatigue of bonded composite joints, Part 2: fatigue threshold prediction[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(1): 59-69. doi: 10.1016/S1359-835X(00)00132-9
|
[65] |
SUGIMAN S, CROCOMBE A D, ASCHROFT I A. The fatigue response of environmentally degraded adhesively bonded aluminium structures[J]. International Journal of Adhesion and Adhesives, 2013, 41(1): 80-91. https://www.sciencedirect.com/science/article/pii/S0143749612001522
|
[66] |
DATLA N V, PAPINI M, ULICNY J, et al. The effects of test temperature and humidity on the mixed-mode fatigue behavior of a toughened adhesive aluminum joint[J]. Engineering Fracture Mechanics, 2011, 78(6): 1125-1139. doi: 10.1016/j.engfracmech.2011.01.028
|
[67] |
PATIL O R, AMELI A, DATLA N V. Predicting environmental degradation of adhesive joints using a cohesive zone finite element model based on accelerated fracture tests[J]. International Journal of Adhesion and Adhesives, 2017, 76: 54-60. doi: 10.1016/j.ijadhadh.2017.02.007
|
[68] |
LILJEDAHL C D M, CROCOMBE A D, WAHAB M A, et al. The effect of residual strains on the progressive damage modelling of environmentally degraded adhesive joints[J]. Journal of Adhesion Science and Technology, 2005, 19(7): 525-547. doi: 10.1163/1568561054352513
|
[69] |
BAI Y, KELLER T. Pultruded GFRP tubes with liquid-cooling system under combined temperature and compressive loading[J]. Composite Structures, 2009, 90(2): 115-121. doi: 10.1016/j.compstruct.2009.02.009
|
[70] |
BAI Y, KELLER T. Effects of thermal loading history on structural adhesive modulus across glass transition[J]. Construction and Building Materials, 2011, 25(4): 2162-2168. doi: 10.1016/j.conbuildmat.2010.11.012
|
[71] |
NGUYEN T C, BAI Y, AL-MAHAIDI R, et al. Time-dependent behaviour of steel/CFRP double strap joints subjected to combined thermal and mechanical loading[J]. Composite Structures, 2012, 94(5): 1826-1833. doi: 10.1016/j.compstruct.2012.01.007
|
[72] |
韩啸. 胶接接头湿热环境耐久性试验与建模研究[D]. 大连: 大连理工大学, 2014.
HAN Xiao. Experimental and modelling study on the durability performance of adhesively bonded joint in hygro-thermal environment[D]. Dalian: Dalian University of Technology, 2014. (in Chinese)
|
[73] |
张晓云, 曹东, 陆峰, 等. T700-5224复合材料在湿热环境和化学介质中的老化行为[J]. 材料工程, 2016, 44(4): 82-88. https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201604015.htm
ZHANG Xiao-yun, CAO Dong, LU Feng, et al. Aging behavior of T700/5224 composite in hygrothermal environment and chemical media[J]. Journal of Materials Engineering, 2016, 44(4): 82-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLGC201604015.htm
|
[74] |
SUN Pei, ZHAO Yan, LUO Yun-feng, et al. Effect of temperature and cyclic hygrothermal aging on the interlaminar shear strength of carbon fiber/bismaleimide (BMI) composite[J]. Materials and Design, 2011, 32(8/9): 4341-4347. https://www.sciencedirect.com/science/article/pii/S0261306911002627
|
[75] |
那景新, 慕文龙, 范以撒, 等. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201806004.htm
NA Jing-xin, MU Wen-long, FAN Yi-sa, et al. Effect of hygrothermal aging on steel-aluminum adhesive joints for automotive applications[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1653-1660. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201806004.htm
|
[76] |
COSTA I, BARROS J. Tensile creep of a structural epoxy adhesive: experimental and analytical characterization[J]. International Journal of Adhesion and Adhesives, 2015, 59: 115-124. doi: 10.1016/j.ijadhadh.2015.02.006
|
[77] |
AGARWAL A, FOSTER S J, HAMED E. Wet thermo-mechanical behavior of steel-CFRP joints—an experimental study[J]. Composites Part B: Engineering, 2015, 83: 284-296. doi: 10.1016/j.compositesb.2015.08.025
|
[78] |
JURF R A, VINSON J R. Effect of moisture on the static and viscoelastic shear properties of epoxy adhesives[J]. Journal of Materials Science, 1985, 20(8): 2979-2989. doi: 10.1007/BF00553063
|
[79] |
NGUYEN T C, BAI Y, ZHAO X L, et al. Durability of steel/CFRP double strap joints exposed to sea water, cyclic temperature and humidity[J]. Composite Structures, 2012, 94(5): 1834-1845. doi: 10.1016/j.compstruct.2012.01.004
|
[80] |
BAI Y, NGUYEN T C, ZHAO X L, et al. Environment-assisted degradation of the bond between steel and carbon-fiber-reinforced polymer[J]. Journal of Materials in Civil Engineering, 2014, 26(9): 04014054. doi: 10.1061/(ASCE)MT.1943-5533.0000951
|
[81] |
SUGIMAN S, CROCOMBE A D. The static and fatigue responses of aged metal laminate doublers joints under tension loading[J]. Journal of Adhesion Science and Technology, 2016, 30(3): 313-327. doi: 10.1080/01694243.2015.1104079
|
[82] |
MU Wen-long, QIN Guo-feng, NA Jing-xin, et al. Effect of alternating load on the residual strength of environmentally aged adhesively bonded CFRP-aluminum alloy joints[J]. Composites Part B: Engineering, 2019, 168: 87-97. doi: 10.1016/j.compositesb.2018.12.070
|
[83] |
MU Wen-long, NA Jing-xin, WANG Guang-bin, et al. Rapid prediction method of failure load for hygrothermally aged CFRP-aluminum alloy single lap joints[J]. Composite Structures, 2020, 252: 112603. doi: 10.1016/j.compstruct.2020.112603
|
[84] |
HAN X, CROCOMBE A D, ANWAR S N R, et al. The strength prediction of adhesive single lap joints exposed to long term loading in a hostile environment[J]. International Journal of Adhesion and Adhesives, 2014, 55: 1-11. doi: 10.1016/j.ijadhadh.2014.06.013
|
[85] |
HAN X, PICKERING E, BO A, et al. Characterisation on the hygrothermal degradation in the mechanical property of structural adhesive: a novel meso-scale approach[J]. Composites Part B: Engineering, 2020, 182(9): 107609. https://eprints.qut.edu.au/198125/
|
[86] |
ICARDI U, SOLA F. Analysis of bonded joints with laminated adherends by a variable kinematics layerwise model[J]. International Journal of Adhesion and Adhesives, 2014, 50: 244-254. doi: 10.1016/j.ijadhadh.2014.02.003
|
[87] |
SELAHI E, TAHANI M, YOUSEFSANI S A. Analytical solution of stress field in adhesively bonded composite single-lap joints under mechanical loadings[J]. International Journal of Engineering, 2014, 27(3): 475-486. https://www.ije.ir/article_72276.html
|
[88] |
WANG Jia-lai, ZHANG Chao. Three-parameter, elastic foundation model for analysis of adhesively bonded joints[J]. International Journal of Adhesion and Adhesives, 2009, 29(5): 495-502. doi: 10.1016/j.ijadhadh.2008.10.002
|
[89] |
DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104. doi: 10.1016/0022-5096(60)90013-2
|
[90] |
MI Y, CRISFIELD M A, DAVIES G A O, et al. Progressive delamination using interface elements[J]. Journal of Composite Materials, 1998, 32(14): 1246-1272. doi: 10.1177/002199839803201401
|
[91] |
TVERGAARD V. Model studies of fibre breakage and debonding in a metal reinforced by short fibres[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(8): 1309-1326. doi: 10.1016/0022-5096(93)90081-P
|
[92] |
TVERGAARD V, HUTCHINSON J W. Effect of strain-dependent cohesive zone model on predictions of crack growth resistance[J]. International Journal of Solids and Structures, 1996, 33(20/21/22): 3297-3308. https://www.sciencedirect.com/science/article/pii/0020768395002618
|
[93] |
NEEDLEMAN A, XU X P. Numerical simulations of fast crack growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397-1434. doi: 10.1016/0022-5096(94)90003-5
|
[94] |
张军, 贾宏. 内聚力模型的形状对胶接结构断裂过程的影响[J]. 力学学报, 2016, 48(5): 1088-1095. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201605009.htm
ZHANG Jun, JIA Hong. Influence of cohesive zone models shape on adhesively bonded joints[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1088-1095. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201605009.htm
|
[95] |
CAMPILHO R D S G, BANEA M D, NETO J A B P, et al. Modelling of single-lap joints using cohesive zone models: effect of the cohesive parameters on the output of the simulations[J]. The Journal of Adhesion, 2012, 88(4/5/6): 513-533. doi: 10.1080/00218464.2012.660834
|
[96] |
LEE K Y, KONG B S. Theoretical and experimental studies for the failure criterion of adhesively bonded joints[J]. Journal of Adhesion Science and Technology, 2000, 14(6): 817-832. doi: 10.1163/15685610051066730
|
[97] |
LI S, THOULESS M D, WAAS A M, et al. Mixed-mode cohesive-zone models for fracture of an adhesively bonded polymer-matrix composite[J]. Engineering Fracture Mechanics, 2006, 73(1): 64-78. doi: 10.1016/j.engfracmech.2005.07.004
|
[98] |
STEARNS R S, DULING I N, JOHNSON R H. The relationship of the glass transition temperature to the viscosity-temperature characteristics of lubricants[J]. I and EC Product Research and Development, 1966, 5(4): 306-313.
|
[99] |
KROPKA J M, ADOLF D B, SPANGLER S, et al. Mechanisms of degradation in adhesive joint strength: glassy polymer thermoset bond in a humid environment[J]. International Journal of Adhesion and Adhesives, 2015, 63: 14-25. doi: 10.1016/j.ijadhadh.2015.07.014
|
[100] |
JOJIBABU P, RAM G D J, DESHPANDE A P, et al. Effect of carbon nano-filler addition on the degradation of epoxy adhesive joints subjected to hygrothermal aging[J]. Polymer Degradation and Stability, 2017, 140: 84-94. doi: 10.1016/j.polymdegradstab.2017.04.017
|
[101] |
NAM J D, SEFERIS J C. Generalized composite degradation kinetics for polymeric systems under isothermal and nonisothermal conditions[J]. Journal of Polymer Science Part B: Polymer Physics, 1992, 30(5): 455-463. doi: 10.1002/polb.1992.090300505
|
[102] |
MU Wen-long, NA Jing-xin, WANG Guang-bin, et al. Rapid prediction method of failure load for hygrothermally aged CFRP-aluminum alloy single lap joints[J]. Composite Structures, 2020, 252: 112603. doi: 10.1016/j.compstruct.2020.112603
|
[103] |
PEKBEY Y. Numerical elastoplastic analysis of the shear stress distribution in the adhesive layer for single-lap joints[J]. Science and Engineering of Composite Materials, 2014, 21(3): 389-400. https://www.researchgate.net/publication/272554348_Numerical_elastoplastic_analysis_of_the_shear_stress_distribution_in_the_adhesive_layer_for_single-lap_joints
|
[104] |
REIS P N B, FERREIRA J A M, ANTUNES F. Effect of adherend's rigidity on the shear strength of single lap adhesive joints[J]. International Journal of Adhesion and Adhesives, 2011, 31(4): 193-201. doi: 10.1016/j.ijadhadh.2010.12.003
|
[105] |
PINTO A M G, MAGALHÃES A G, CAMPILHO R D S G, et al. Single-lap joints of similar and dissimilar adherends bonded with an acrylic adhesive[J]. The Journal of Adhesion, 2009, 85(6): 351-376. doi: 10.1080/00218460902880313
|
[106] |
QIN Guo-feng, NA Jing-xin, TAN Wei, et al. Failure prediction of adhesively bonded CFRP-aluminum alloy joints using cohesive zone model with consideration of temperature effect[J]. The Journal of Adhesion, 2019, 95(8): 723-746. doi: 10.1080/00218464.2018.1440212
|
[107] |
NA J X, WANG G B, MU W L, et al. Study on the fracture failure criteria for bonded structures considering temperature sensitivity[J]. Journal of Adhesion Science and Technology, 2021, 35(3): 269-295. doi: 10.1080/01694243.2020.1800973
|
[108] |
JEN Y M. Fatigue life evaluation of adhesively bonded scarf joints[J]. International Journal of Fatigue, 2012, 36(1): 30-39. doi: 10.1016/j.ijfatigue.2011.08.018
|
[109] |
KUMAR S, PANDEY P. Cyclic-fatigue performance of adhesively bonded lap joint[J]. Failure Mechanics Letters (FML), 2006, 1(1): 541-546.
|
[110] |
GOMATAM R R, SANCAKTAR E. The effects of stress state, loading frequency and cyclic waveforms on the fatigue behavior of silver-filled electronically-conductive adhesive joints[J]. Journal of Adhesion Science and Technology, 2006, 20(1): 53-68. doi: 10.1163/156856106775212378
|
[111] |
MARIAM M, AFENDI M, MAJID M S A, et al. Water ageing effect on the strength of adhesively bonded joints[J]. AIP Conference Proceedings, 2018, 2030(1): 735-743. https://www.researchgate.net/profile/M-Mariam/publication/328893297_Water_ageing_effect_on_the_strength_of_adhesively_bonded_joints/links/5c15089792851c39ebef29bb/Water-ageing-effect-on-the-strength-of-adhesively-bonded-joints.pdf
|
[112] |
SHENOY V, ASHCROFT I A, CRITCHLOW G W, et al. Unified methodology for the prediction of the fatigue behaviour of adhesively bonded joints[J]. International Journal of Fatigue, 2010, 32(8): 1278-1288. doi: 10.1016/j.ijfatigue.2010.01.013
|
[113] |
何春林, 龚成中, 邢静忠. 复合材料疲劳理论研究进展[J]. 甘肃科技, 2006, 22(3): 140-143. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKJ200603055.htm
HE Chun-lin, GONG Cheng-zhong, XING Jing-zhong, et al. Review on fatigue theory of composite materials[J]. Gansu Science and Technology, 2006, 22(3): 140-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSKJ200603055.htm
|
[114] |
KINLOCH A J, OSIYEMI S O, OSLYEML S. Predicting the fatigue life of adhesively-bonded joints[J]. The Journal of Adhesion, 1993, 43(1/2): 79-90. https://www.sciencedirect.com/science/article/pii/B9780857098061000161
|
[115] |
KHORAMISHAD H, CROCOMBE A D, KATNAM K B, et al. Predicting fatigue damage in adhesively bonded joints using a cohesive zone model[J]. International Journal of Fatigue, 2010, 32(7): 1146-1158. doi: 10.1016/j.ijfatigue.2009.12.013
|
[116] |
GRANER SOLANA A, CROCOMBE A D, ASHCROFT I A. Fatigue life and backface strain predictions in adhesively bonded joints[J]. International Journal of Adhesion and Adhesives, 2010, 30(1): 36-42. doi: 10.1016/j.ijadhadh.2009.08.001
|
[117] |
SHENOY V, ASHCROFT I A, CRITCHLOW G W, et al. An investigation into the crack initiation and propagation behaviour of bonded single-lap joints using backface strain[J]. International Journal of Adhesion and Adhesives, 2009, 29(4): 361-371. doi: 10.1016/j.ijadhadh.2008.07.008
|