Volume 21 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
TIAN Chun, WENG Jing-jing, WU Meng-ling, ZUO Jian-yong. Review on test methods of aerodynamic brake for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 94-105. doi: 10.19818/j.cnki.1671-1637.2021.06.007
Citation: TIAN Chun, WENG Jing-jing, WU Meng-ling, ZUO Jian-yong. Review on test methods of aerodynamic brake for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 94-105. doi: 10.19818/j.cnki.1671-1637.2021.06.007

Review on test methods of aerodynamic brake for high-speed train

doi: 10.19818/j.cnki.1671-1637.2021.06.007
Funds:

National Natural Science Foundation of China 52072266

More Information
  • Author Bio:

    TIAN Chun(1977-), female, associate professor, PhD, chtian@tongji.edu.cn

  • Received Date: 2021-05-25
    Available Online: 2022-02-11
  • Publish Date: 2021-12-01
  • For the problem of no unified standards for aerodynamic braking test methods for high-speed trains, the relevant achievements and developments in aerodynamic brake were systematically reviewed in two aspects from aerodynamic characteristics and device functional characteristics. The effects of the shape, size, position, and spacing of wind panel on the aerodynamic characteristics and the effects of the structure, working principle, and configuration of the device on the functional characteristics were analyzed. The test requirements for the braking system performance were clarified. The impacts of aerodynamic braking on other equipments in the vehicle, operational stability of wheel-track/maglev train, and aerodynamic noise were analyzed. In addition, the test requirements for the operational impact of the aerodynamic brake were determined. The effects of object impact, average wind load, and pulsating wind load on the aerodynamic braking devices and the effect of the device installation on the structural strength of vehicle were analyzed. Furthermore, the test requirements for the structural strength of the aerodynamic brake were clarified. Analysis results show that with the application of a new composite wind panel, further detailed information regarding the bird striking test process should be recorded by using a high-speed camera. Aerodynamic load test is convenient to simulate and verify braking capacity, strength and aerodynamic noise of the device under different operating conditions. However, it is difficult to test the braking system and car body because of space and cost constraints. Field tests can verify the braking system performance, operational impact, and structural strength, but it is challenging to simulate all operating conditions, limited by weather conditions. Further investigations of the standard test methods of aerodynamic brake are required, ground wind loading test and field test simulation methods for determining different device locations, operating conditions, and fault states are explored, and the evaluation standard of test results is improved. 4 tabs, 11 figs, 55 refs.

     

  • loading
  • [1]
    吴萌岭, 马天和, 田春, 等. 列车制动技术发展趋势探讨[J]. 中国铁道科学, 2019, 40(1): 134-144. doi: 10.3969/j.issn.1001-4632.2019.01.18

    WU Meng-ling, MA Tian-he, TIAN Chun, et al. Discussion on development trend of train braking technology[J]. China Railway Science, 2019, 40(1): 134-144. (in Chinese) doi: 10.3969/j.issn.1001-4632.2019.01.18
    [2]
    MEINS J, MILLER L, MAYER W J. The high speed maglev transport system transrapid[J]. IEEE Transactions on Magnetics, 1988, 24(2): 808-811. doi: 10.1109/20.11347
    [3]
    HE J L, ROTE D M, COFFEY H T. Survey of foreign maglev systems[R]. Argonne: Argonne National Laboratory, 1992.
    [4]
    OBARA T, KUMAGAI N, TAKIGUCHI T. Development of hybrid rail brake[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1995, 209(2): 61-65. doi: 10.1243/PIME_PROC_1995_209_257_02
    [5]
    陈爱芬. ICE 3率先采用轨道涡流制动运营[J]. 国外铁道车辆, 2001, 38(4): 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD200104012.htm

    CHEN Ai-fen. ICE 3 pioneers application of eddy-current rail brakes[J]. Foreign Rolling Stock, 2001, 38(4): 37-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD200104012.htm
    [6]
    林台平, 林晖. 电磁轨道制动装置的研究[J]. 中国铁道科学, 1997, 18(1): 16-30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK701.001.htm

    LIN Tai-ping, LIN Hui. Study of electro-magnetic track brake equipment for railway[J]. China Railway Science, 1997, 18(1): 16-30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK701.001.htm
    [7]
    TANIGUCHI M. The Japanese magnetic levitation trains[J]. Built Environment, 1993, 19(3): 234-243.
    [8]
    HE J L, ROTE D M, COFFEY H T. Study of Japanese electrodynamic-suspension maglev systems[R]. Argonne: Argonne National Laboratory, 1994.
    [9]
    ARAI H, KANNO S, FUJINO K, et al. Development of a brake system for shinkansen speed increase[J]. JR East Technical Review, 2010, 16: 17-21.
    [10]
    NAGASAKI Y, KOKAGO R, NAKAMURA M, et al. Auxiliary power unit of series E956 high-speed experimental shinkansen train for East Japan Railway Company[J]. Toyo Denki Technical Journal, 2021(143): 10-19.
    [11]
    苗秀娟, 梁习锋. 高速列车空气制动板的研究[C]//中国空气动力学学会, 2004年度中国工业空气动力学学术论文集. 北京: 中国空气动力学学会, 2004: 137-141.

    MIAO Xiu-juan, LIANG Xi-feng. Research on air brake board of high-speed train[C]//Industrial Aerodynamics Conference. 2004 Industrial Aerodynamics Conference. Beijing: Industrial Aerodynamics Conference, 2004: 137-141. (in Chinese)
    [12]
    崔涛, 张卫华. 翼板制动气动性能数值分析[J]. 铁道机车车辆, 2009, 29(6): 1-2, 27. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200906000.htm

    CUI Tao, ZHANG Wei-hua. Aerodynamic quality analysis of wing plate brake[J]. Railway Locomotive and Car, 2009, 29(6): 1-2, 27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200906000.htm
    [13]
    田春, 吴萌岭, 任利惠, 等. 空气动力制动研究初探[J]. 铁道车辆, 2009, 47(3): 10-12, 47. doi: 10.3969/j.issn.1002-7602.2009.03.003

    TIAN Chun, WU Meng-ling, REN Li-hui, et al. Initial discussion of research in aerodynamic brake[J]. Rolling Stock, 2009, 47(3): 10-12, 47. (in Chinese) doi: 10.3969/j.issn.1002-7602.2009.03.003
    [14]
    PUHARIĆ M, MATIĆ D, LINIĆ S, et al. Determination of braking force on the aerodynamic brake by numerical simulations[J]. FME Transactions, 2014, 42(2): 106-111. doi: 10.5937/fmet1402106P
    [15]
    LEE M, BHANDARI B. Theapplication of aerodynamic brake for high-speed trains[J]. Journal of Mechanical Science and Technology, 2018, 32(12): 5749-5754. doi: 10.1007/s12206-018-1122-8
    [16]
    YOSHIMURA M, SAITO S, HOSAKA S, et al. Characteristics of the aerodynamic brake of the vehicle on the Yamanashi maglev test line[J]. Quarterly Report of RTRI, 2000, 41(2): 74-78. doi: 10.2219/rtriqr.41.74
    [17]
    田春, 吴萌岭, 费巍巍, 等. 空气动力制动制动风翼纵向位置制动力规律[J]. 同济大学学报(自然科学版), 2011, 39(5): 705-709. doi: 10.3969/j.issn.0253-374x.2011.05.014

    TIAN Chun, WU Meng-ling, FEI Wei-wei, et al. Rule of aerodynamics braking force in longitudinal different position of high-speed train[J]. Journal of Tongji University (Natural Science), 2011, 39(5): 705-709. (in Chinese) doi: 10.3969/j.issn.0253-374x.2011.05.014
    [18]
    田春, 吴萌岭, 朱洋永, 等. 空气动力制动风翼在车上布置数值仿真研究[J]. 中国铁道科学, 2012, 33(3): 98-101. doi: 10.3969/j.issn.1001-4632.2012.03.16

    TIAN Chun, WU Meng-ling, ZHU Yang-yong, et al. Numerical simulation research on the arrangement of the aerodynamic braking plates in the train[J]. China Railway Science, 2012, 33(3): 98-101. (in Chinese) doi: 10.3969/j.issn.1001-4632.2012.03.16
    [19]
    高立强, 奚鹰, 王国华, 等. 基于CFD的高速列车空气动力制动风翼板型研究[J]. 中国工程机械学报, 2015, 13(3): 236-241. doi: 10.3969/j.issn.1672-5581.2015.03.009

    GAO Li-qiang, XI Ying, WANG Guo-hua, et al. CFD-based study on aerodynamic brake wind-panel forms for high-speed trfferain[J]. Chinese Journal of Construction Machinery, 2015, 13(3): 236-241. (in Chinese) doi: 10.3969/j.issn.1672-5581.2015.03.009
    [20]
    高立强, 胡雄, 孙德建, 等. 空气动力制动前排风翼板制动力影响规律[J]. 铁道学报, 2018, 40(1): 31-37. doi: 10.3969/j.issn.1001-8360.2018.01.005

    GAO Li-qiang, HU Xiong, SUN De-jian, et al. Influence rule of aerodynamics braking force from the front brake panel[J]. Journal of the China Railway Society, 2018, 40(1): 31-37. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.01.005
    [21]
    TAKAMI H. Development of small-size and light-weight aerodynamic brake for high-speed railway[J]. Transactions of the Japan Society of Mechanical Engineers, Part B, 2020, 86(881): 19-295.
    [22]
    TAKAMI H, MAEKAWA H. Characteristics of awind-actuated aerodynamic braking device for high-speed trains[J]. Journal of Physics: Conference Series, 2017, 822(1): 012061.
    [23]
    TAKAMI H. Development of small-sized aerodynamic brake for high-speed railway[J]. Transactions of the Japan Society of Mechanical Engineers, Part B, 2013, 79(803): 1254-1263. doi: 10.1299/kikaib.79.1254
    [24]
    NIU Ji-qiang, WANG Yue-ming, WU Dan, et al. Comparison of different configurations of aerodynamic braking plate on the flow around a high-speed train[J]. Engineering Applications of Computational Fluid Mechanics, 2020, 14(1): 655-668. doi: 10.1080/19942060.2020.1756414
    [25]
    NIU Ji-qiang, WANG Yue-ming, LIU Feng, et al. Numerical study on the effect of a downstream braking plate on the detailed flow field and unsteady aerodynamic characteristics of an upstream braking plate with or without a crosswind[J]. Vehicle System Dynamics, 2021, 59(5): 657-674. doi: 10.1080/00423114.2019.1708959
    [26]
    NIU Ji-qiang, WANG Yue-ming, LI Rui, et al. Comparison of aerodynamic characteristics of high-speed train for different configurations of aerodynamic braking plates installed in inter-car gap region[J]. Flow, Turbulence and Combustion, 2021, 106(1): 139-161. doi: 10.1007/s10494-020-00196-0
    [27]
    孙文静, 田春, 周劲松, 等. 高速列车空气动力制动会车动力学性能[J]. 同济大学学报(自然科学版), 2014, 42(9): 1401-1407. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201409016.htm

    SUN Wen-jing, TIAN Chun, ZHOU Jin-song, et al. Dynamics performance of high-speed train with aerodynamic brake under crossing[J]. Journal of Tongji University (Natural Science), 2014, 42(9): 1401-1407. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201409016.htm
    [28]
    ZHAI Ju-jia, NIU Ji-qiang, WANG Yue-ming, et al. Unsteady flow and aerodynamic behavior of high-speed train braking plates with and without crosswinds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104309. doi: 10.1016/j.jweia.2020.104309
    [29]
    SAWADA K. Development of magnetically levitated high speed transport system in Japan[J]. IEEE Transactions on Magnetics, 1996, 32(4): 2230-2235. doi: 10.1109/20.508609
    [30]
    SHIRAKUNI N, ENDO Y, TAKAHASHI K, et al. Overview of new vehicles for the Yamanashi maglev test line[C]//The International Maglev Board. Proceedings of the 17th international conference on magnetically levitated systems. Munich: The International Maglev Board, 2002: 05104.
    [31]
    吉村正文. 宫崎试验线车辆空气动力制动装置的开发[J]. 国外铁道车辆, 1996(5): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD605.010.htm

    MASAFUMI Y. Development of aerodynamic brake of Miyazaki maglev test line vehicle[J]. Foreign Rolling Stock, 1996(5): 44-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD605.010.htm
    [32]
    ZUO Jian-yong, WU Meng-ling, TIAN Chun, et al. Aerodynamic braking device for high-speed trains: design, simulation and experiment[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228(3): 260-270. doi: 10.1177/0954409712471620
    [33]
    李瑞平, 周宁, 张卫华, 等. 受电弓气动抬升力计算方法与分析[J]. 铁道学报, 2012, 34(8): 26-32. doi: 10.3969/j.issn.1001-8360.2012.08.005

    LI Rui-ping, ZHOU Ning, ZHANG Wei-hua, et al. Calculation and analysis of pantograph aerodynamic uplift force[J]. Journal of the China Railway Society, 2012, 34(8): 26-32. (in Chinese) doi: 10.3969/j.issn.1001-8360.2012.08.005
    [34]
    刘杰, 李人宪, 陈琳, 等. 高速列车空调系统及车内流场分析[J]. 西南交通大学学报, 2012, 47(1): 127-132. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201201024.htm

    LIU Jie, LI Ren-xian, CHEN Lin, et al. Analysis of air flow field in air conditioning system and compartments of high-speed trains[J]. Journal of Southwest Jiaotong University, 2012, 47(1): 127-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201201024.htm
    [35]
    田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6(1): 1-9. doi: 10.3321/j.issn:1671-1637.2006.01.001

    TIAN Hong-qi. Study evolvement of train aerodynamics in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 1-9. (in Chinese) doi: 10.3321/j.issn:1671-1637.2006.01.001
    [36]
    沈志云. 高速列车的动态环境及其技术的根本特点[J]. 铁道学报, 2006(4): 1-5. doi: 10.3321/j.issn:1001-8360.2006.04.001

    SHEN Zhi-yun. Dynamic environment of high-speed train and its distinguished technology[J]. Journal of the China Railway Society, 2006(4): 1-5. (in Chinese) doi: 10.3321/j.issn:1001-8360.2006.04.001
    [37]
    郭薇薇, 夏禾, 徐幼麟. 风荷载作用下大跨度悬索桥的动力响应及列车运行安全分析[J]. 工程力学, 2006(2): 103-110. doi: 10.3969/j.issn.1000-4750.2006.02.018

    GUO Wei-wei, XIA He, XU You-lin. Dynamic response of long span suspension bridge and running safety of train under wind action[J]. Engineering Mechanics, 2006(2): 103-110. (in Chinese) doi: 10.3969/j.issn.1000-4750.2006.02.018
    [38]
    WANG Xiao-liang, WANG Fu-xin, LI Ya-lin. Aerodynamic characteristics of high-lift devices with downward deflection of spoiler[J]. Journal of Aircraft, 2011, 48(2): 730-735. doi: 10.2514/1.C031301
    [39]
    ZHU Ji-hong, ZHANG Wei-hong, XIA Liang. Topology optimization in aircraft and aerospace structures design[J]. Archives of Computational Methods in Engineering, 2016, 23(4): 595-622. doi: 10.1007/s11831-015-9151-2
    [40]
    LIU Jie, OU Hai-feng, HE Jun-feng, et al. Topological design of a lightweight sandwich aircraft spoiler[J]. Materials, 2019, 12(19): 3225. doi: 10.3390/ma12193225
    [41]
    金朋, 宋笔锋, 钟小平, 等. 基于几何因子的复合材料层合板颤振特性[J]. 复合材料学报, 2015, 32(6): 1814-1823. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201506035.htm

    JIN Peng, SONG Bi-feng, ZHONG Xiao-ping, et al. Flutter characteristic of composite laminates with lamination parameters[J]. Acta Materiae Compositae Sinica, 2015, 32(6): 1814-1823. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201506035.htm
    [42]
    GAND F. Zonaldetached eddy simulation of a civil aircraft with a deflected spoiler[J]. AIAA Journal, 2012, 51(3): 697-706.
    [43]
    TIAN Yun, FENG Pei-hua, LIU Pei-qing, et al. Spoiler upward deflection on transonic buffet control of supercritical airfoil and wing[J]. Journal of Aircraft, 2017, 54(3): 1229-1233.
    [44]
    左建勇, 朱晓宇, 吴萌岭. 高速列车风阻制动风翼抗鸟撞分析[J]. 振动与冲击, 2014, 33(22): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201422006.htm

    ZUO Jian-yong, ZHU Xiao-yu, WU Meng-ling. Numerical analysis of anti-bird impact performance of aerodynamic brake wing on high-speed train[J]. Journal of Vibration and Shock, 2014, 33(22): 30-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201422006.htm
    [45]
    管公顺, 张伟, 庞宝君, 等. 铝球弹丸高速正撞击薄铝板穿孔研究[J]. 高压物理学报, 2005, 19(2): 132-138. doi: 10.3969/j.issn.1000-5773.2005.02.006

    GUAN Gong-shun, ZHANG Wei, PANG Bao-jun, et al. A study of penetration hole diameter in thin Al-plate by hypervelocity impact of Al-spheres[J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 132-138. (in Chinese) doi: 10.3969/j.issn.1000-5773.2005.02.006
    [46]
    张伟, 马文来, 马志涛, 等. 弹丸超高速撞击铝靶成坑数值模拟[J]. 高压物理学报, 2006, 20(1): 1-5. doi: 10.3969/j.issn.1000-5773.2006.01.001

    ZHANG Wei, MA Wen-lai, MA Zhi-tao, et al. Numerical simulation of craters produced by projectile hypervelocity impact on aluminum targets[J]. Chinese Journal of High Pressure Physics, 2006, 20(1): 1-5. (in Chinese) doi: 10.3969/j.issn.1000-5773.2006.01.001
    [47]
    于连超, 陈伟, 关玉璞, 等. 复合材料层合板鸟撞损伤及吸能影响因素数值分析[J]. 航空动力学报, 2008, 23(6): 1106-1110. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200806025.htm

    YU Lian-chao, CHEN Wei, GUAN Yu-pu, et al. Numerical analysis of the damage of bird impaction against composite laminates and the influence factors on absorbing energy[J]. Journal of Aerospace Power, 2008, 23(6): 1106-1110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI200806025.htm
    [48]
    GEORGIADIS S, GUNNION A J, THOMSON R S, et al. Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge[J]. Composite Structures, 2008, 86(1): 258-268.
    [49]
    刘权良, 尹伟, 夏峰. 飞机结构静强度试验支持方案的确定[J]. 航空科学技术, 2012(5): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201205012.htm

    LIU Quan-liang, YIN Wei, XIA Feng. The determination of support scheme for aircraft static strength verification test[J]. Aeronautical Science and Technology, 2012(5): 32-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201205012.htm
    [50]
    刘玮, 滕青, 刘冰. 基于地板结构的机身双层双向加载技术[J]. 航空学报, 2018, 39(5): 136-143. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201805012.htm

    LIU Wei, TENG Qing, LIU Bing. Double-deck bi-directional loading technology based on airliner cabin floor structure[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 136-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201805012.htm
    [51]
    LOKOS W, OLNEY C, CHEN T, et al. Strain-gage loads calibration testing of the active aeroelastic wing F/A-18 aircraft[C]// American Institute of Aeronautics and Astronautics. 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: American Institute of Aeronautics and Astronautics, 2002: 210726.
    [52]
    郭琼, 郑建军, 刘玮. 大型客机机翼"双梁"式胶布带轻量模块化加载技术[J]. 工程与试验, 2020, 60(1): 12-13, 23. doi: 10.3969/j.issn.1674-3407.2020.01.006

    GUO Qiong, ZHENG Jian-jun, LIU Wei. Light weight modular loading technology of double-beam loading tape on the wing for large airliner[J]. Engineering and Test, 2020, 60(1): 12-13, 23. (in Chinese) doi: 10.3969/j.issn.1674-3407.2020.01.006
    [53]
    HAND M M, SIMMS D A, FINGERSH L J, et al. Unsteady aerodynamics experiment phase Ⅵ: wind tunnel test configurations and available data campaigns[R]. Colorado: National Renewable Energy Laboratory, 2001.
    [54]
    奚鹰, 高立强, 王国华, 等. 基于CFD空气动力制动风载荷试验台仿真设计[J]. 机械设计, 2015, 32(9): 12-18. doi: 10.3969/j.issn.1001-3997.2015.09.004

    XI Ying, GAO Li-qiang, WANG Guo-hua, et al. Simulation design on the aerodynamic wind load test bed based on CFD[J]. Journal of Machine Design, 2015, 32(9): 12-18. (in Chinese) doi: 10.3969/j.issn.1001-3997.2015.09.004
    [55]
    武存浩, 杨嘉陵, 臧曙光, 等. 鸟撞高速摄影试验与过程研究[J]. 北京航空航天大学学报, 2001, 27(3): 332-335. doi: 10.3969/j.issn.1001-5965.2001.03.022

    WU Cun-hao, YANG Jia-ling, ZANG Shu-guang, et al. Study of bird impact loading model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(3): 332-335. (in Chinese) doi: 10.3969/j.issn.1001-5965.2001.03.022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1598) PDF downloads(140) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return