Citation: | CAI Zhi-chao, CHEN Lan, LI Hao, QIN Tao, SHEN Ming-xue. Wear detection method of CL60 railway wheel and U75V rail steel based on nonlinear ultrasound[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 136-146. doi: 10.19818/j.cnki.1671-1637.2021.06.010 |
[1] |
董永刚, 仪帅, 黄鑫磊, 等. 重载列车紧急制动过程车轮踏面疲劳裂纹萌生寿命预测[J]. 中国铁道科学, 2021, 42(5): 123-131. doi: 10.3969/j.issn.1001-4632.2021.05.14
DONG Yong-gang, YI Shuai, HUANG Xin-lei, et al. Prediction of fatigue crack initiation life of wheel tread during emergency braking of heavy haul train[J]. China Railway Science, 2021, 42(5): 123-131. (in Chinese) doi: 10.3969/j.issn.1001-4632.2021.05.14
|
[2] |
马晓川, 刘林芽, 冯青松, 等. 铁路钢轨裂纹萌生的键型近场动力学预测模型[J]. 交通运输工程学报, 2021, 21(3): 228-237. doi: 10.19818/j.cnki.1671-1637.2021.03.015
MA Xiao-chuan, LIU Lin-ya, FENG Qing-song, et al. Prediction model of rail crack initiation using bond-based peridynamics theory[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 228-237. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.03.015
|
[3] |
任安超, 朱敏, 费俊杰, 等. U75V和U68CrCu钢轨钢早期腐蚀机理研究[J]. 中国铁道科学, 2014, 35(5): 7-12. doi: 10.3969/j.issn.1001-4632.2014.05.02
REN An-chao, ZHU Min, FEI Jun-jie, et al. Early corrosion mechanism of U75V and U68CrCu rail steel[J]. China Railway Science, 2014, 35(5): 7-12. (in Chinese) doi: 10.3969/j.issn.1001-4632.2014.05.02
|
[4] |
昝晓东, 李孝滔, 邢帅兵, 等. 疲劳裂纹扩展引起的钢轨表面剥离研究[J]. 铁道科学与工程学报, 2018, 15(12): 3082-3088. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201812009.htm
ZAN Xiao-dong, LI Xiao-tao, XING Shuai-bing, et al. Analysis of rail surface shelling resulting from fatigue crack propagation[J]. Journal of Railway Science and Engineering, 2018, 15(12): 3082-3088. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201812009.htm
|
[5] |
曹世豪, 李佳莉, 杨荣山, 等. 滚动接触作用下钢轨表面裂纹扩展机理分析[J]. 华中科技大学学报(自然科学版), 2017, 45(4): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201704003.htm
CAO Shi-hao, LI Jia-li, YANG Rong-shan, et al. Propagation mechanism analysis of crack on rail surface under rolling contact[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(4): 11-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201704003.htm
|
[6] |
肖乾, 王丹红, 陈道云, 等. 高速列车轮轨激励作用机理及其影响综述[J]. 交通运输工程学报, 2021, 21(3): 93-109. doi: 10.19818/j.cnki.1671-1637.2021.03.005
XIAO Qian, WANG Dan-hong, CHEN Dao-yun, et al. Review on mechanism and influence of wheel-rail excitation of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 93-109. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.03.005
|
[7] |
敬霖, 刘凯. 车轮踏面缺陷引起的轮轨动态响应综述[J]. 交通运输工程学报, 2021, 21(1): 285-315. doi: 10.19818/j.cnki.1671-1637.2021.01.014
JING Lin, LIU Kai. Review on wheel-rail dynamic responses caused by wheel tread defects[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 285-315. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.014
|
[8] |
赵鑫, 温泽峰, 王衡禹, 等. 中国轨道交通轮轨滚动接触疲劳研究进展[J]. 交通运输工程学报, 2021, 21(1): 1-35. doi: 10.19818/j.cnki.1671-1637.2021.01.001
ZHAO Xin, WEN Ze-feng, WANG Heng-yu, et al. Research progress on wheel/rail rolling contact fatigue of rail transit in China[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 1-35. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.001
|
[9] |
周桂源, 何成刚, 文广, 等. 高速和低速工况下列车车轮的损伤行为对比[J]. 机械工程材料, 2016, 40(10): 6-10, 64. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201610002.htm
ZHOU Gui-yuan, HE Cheng-gang, WEN Guang, et al. Comparison of damage behaviors of railway wheel under high and low speed conditions[J]. Materials for Mechanical Engineering, 2016, 40(10): 6-10, 64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201610002.htm
|
[10] |
周小林, 向延念, 陈秀方. U71Mn 50 kg·m-1普通碳素钢钢轨疲劳裂纹扩展速率试验研究[J]. 中国铁道科学, 2004, 25(3): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200403018.htm
ZHOU Xiao-lin, XIANG Yan-nian, CHEN Xiu-fang. Test and study of fatigue fracture propagation of U71Mn 50 kg·m-1 ordinary carbon steel rail[J]. China Railway Science, 2004, 25(3): 87-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200403018.htm
|
[11] |
马明阳. 高速列车车轮磨耗预测及关键影响因素仿真分析[D]. 北京: 中国铁道科学研究院, 2016.
MA Ming-yang. Prediction and key factors simulation on wheel wear of high-speed train[D]. Beijing: China Academy of Railway Sciences, 2016. (in Chinese)
|
[12] |
尹波润, 文永蓬, 尚慧琳. 基于元胞自动机方法的地铁车轮磨损动态建模与仿真[J]. 机械工程学报, 2019, 55(2): 135-146. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201902016.htm
YIN Bo-run, WEN Yong-peng, SHANG Hui-lin. Dynamic modeling and simulation of metro wheel wear based on cellular automata method[J]. Journal of Mechanical Engineering, 2019, 55(2): 135-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201902016.htm
|
[13] |
申永代. U78CrV钢轨非典型线状剥离掉块伤损分析[J]. 金属材料与冶金工程, 2019, 47(5): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HNYI201905006.htm
SHEN Yong-dai. Damage analysis of atypical linear exfoliations on U78CrV rails[J]. Metal Materials and Metallurgy Engineering, 2019, 47(5): 26-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNYI201905006.htm
|
[14] |
ZHANG Xin, HAO Qiu-shi, WANG Kang-wei, et al. An investigation on acoustic emission detection of rail crack in actual application by chaos theory with improved feature detection method[J]. Journal of Sound and Vibration, 2018, 436: 165-182. https://www.sciencedirect.com/science/article/abs/pii/S0022460X18305935
|
[15] |
ZHANG Xin, CUI Yi-ming, WANG Yan, et al. An improved AE detection method of rail defect based on multi-level ANC with VSS-LMS[J]. Mechanical Systems and Signal Processing, 2018, 99: 420-433.
|
[16] |
PENG Jian-ping, TIAN Gui-yun, WANG Li, et al. Investigation into eddy current pulsed thermography for rolling contact fatigue detection and characterization[J]. NDT and E International, 2015, 74: 72-80. https://www.sciencedirect.com/science/article/pii/S0963869515000584
|
[17] |
PATHAK M, ALAHAKOON S, SPIRYAGIN M, et al. Rail foot flaw detection based on a laser induced ultrasonic guided wave method[J]. Measurement, 2019, 148: 106922. https://www.sciencedirect.com/science/article/pii/S0263224119307791
|
[18] |
NAGATO K, SHINTANI K, HAMAGUCHI T, et al. Real-time detection of microcracks with floating giant-magnetoresistance sensor in twin-disk sliding tests[J]. CIRP Annals, 2017, 66(1): 539-542.
|
[19] |
王嵘, 余祖俊, 朱力强, 等. 基于导波速度的无缝钢轨应力检测方法[J]. 中国铁道科学, 2018, 39(2): 18-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201802003.htm
WANG Rong, YU Zu-jun, ZHU Li-qiang, et al. Detection method for stress in continuously welded rail based on guided wave velocity[J]. China Railway Science, 2018, 39(2): 18-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201802003.htm
|
[20] |
HU Hong-wei, ZOU Zhi-cheng, JIANG You-bao, et al. Finite element simulation and experimental study of residual stress testing using nonlinear ultrasonic surface wave technique[J]. Applied Acoustics, 2019, 154: 11-17. https://www.sciencedirect.com/science/article/pii/S0003682X19301665
|
[21] |
MAO Han-ying, ZHANG Yu-hua, MAO Han-ling, et al. The fatigue damage evaluation of gear in sugarcane presser using higher order ultrasonic nonlinear coefficients[J]. Results in Physics, 2018, 10: 601-606. https://www.sciencedirect.com/science/article/pii/S221137971830768X
|
[22] |
万楚豪, 刚铁, 刘斌, 等. 高速铁路钢轨疲劳过程的超声非线性系数表征[J]. 中国铁道科学, 2015, 36(5): 75-79. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201505012.htm
WAN Chu-hao, GANG Tie, LIU Bin, et al. Characterization of nonlinear ultrasonic coefficient during rail fatigue process of high speed railway[J]. China Railway Science, 2015, 36(5): 75-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201505012.htm
|
[23] |
李伟, 张璐莹, 黄远航, 等. 碳纤维复合材料疲劳损伤的非线性超声评价方法[J]. 无损检测, 2019, 41(8): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201908002.htm
LI Wei, ZHANG Lu-ying, HUANG Yuan-hang, et al. Nonlinear ultrasonic assessment method for fatigue damage of carbon fiber composite[J]. Nondestructive Testing, 2019, 41(8): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201908002.htm
|
[24] |
HONG Ming, SU Zhong-qing, WANG Qiang, et al. Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: theory, simulation, and experimental validation[J]. Ultrasonics, 2014, 54: 770-778. https://www.sciencedirect.com/science/article/pii/S0041624X13002837
|
[25] |
PANTEA C, OSTERHOUDT C F, SINHA D N. Determination of acoustical nonlinear parameter β of water using the finite amplitude method[J]. Ultrasonics, 2013, 53(5): 1012-1019.
|
[26] |
LIU S M, BEST S, NEILD S A, et al. Measuring bulk material nonlinearity using harmonic generation[J]. NDT and E International, 2012(48): 46-53.
|
[27] |
DENG Ming-xi. Analysis of second-harmonic generation of Lamb modes using a modal analysis approach[J]. Journal of Applied Physics, 2003(94): 4152-4159.
|
[28] |
VEN DEN ABEELE K, SUTIN A, CARMELIET J, et al. Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS)[J]. NDT and E International, 2001, 34(4): 239-248. https://www.sciencedirect.com/science/article/pii/S0963869500000645
|
[29] |
周崎, 刘莹峰, 樊嘉琦, 等. 金属疲劳损伤的线性与非线性超声联合评价方法研究[J]. 中国测试, 2021, 47(5): 151-155. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202105024.htm
ZHOU Qi, LIU Ying-feng, FAN Jia-qi, et al. Research on linear and nonlinear ultrasonic joint evaluation method of metal fatigue damage[J]. China Measurement and Test, 2021, 47(5): 151-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202105024.htm
|
[30] |
BJØRNØ L. Introduction to nonlinear acoustics[J]. Physics Procedia, 2010, 3(1): 5-16. https://www.sciencedirect.com/science/article/pii/S1875389210000040
|