Volume 21 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
XIAO Qian, CHENG Yu-qi, LUO Jia-wen, ZHOU Sheng-tong, ZHOU Qian-zhe, CAO Tao-ying. Sensitivity analysis of high-speed train wheel vibration influenced by vehicle-track coupling[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 160-169. doi: 10.19818/j.cnki.1671-1637.2021.06.012
Citation: XIAO Qian, CHENG Yu-qi, LUO Jia-wen, ZHOU Sheng-tong, ZHOU Qian-zhe, CAO Tao-ying. Sensitivity analysis of high-speed train wheel vibration influenced by vehicle-track coupling[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 160-169. doi: 10.19818/j.cnki.1671-1637.2021.06.012

Sensitivity analysis of high-speed train wheel vibration influenced by vehicle-track coupling

doi: 10.19818/j.cnki.1671-1637.2021.06.012
Funds:

National Natural Science Foundation of China 51975210

Open Poject of State Key Laboratory of Heavy Duty AC Drive Electric Locomotives System Integration 13221430000480

More Information
  • Author Bio:

    XIAO Qian(1977-), male, professor, PhD, jxraiph@foxmail.com

  • Corresponding author: CHENG Yu-qi(1995-), female, graduate student, 745357588@qq.com
  • Received Date: 2021-07-21
    Available Online: 2022-02-11
  • Publish Date: 2021-12-01
  • A random simulation model for one trailer of the CRH2 EMU was established based on the multi-body dynamics software UM under considering the randomness of the primary and secondary suspension parameters of the vehicle and track parameters. The optimal Latin hypercube experimental design method was used to extract the random samples of the parameters, the multi-objective optimization software iSight was used to select the random samples, and the UM was used to analyze the samples. Under the limitation of limited experimental design samples and simulation data, a polynomial chaos expansion surrogate model was built by combining the minimum angle regression, low-order interactive truncation and leave-one-out cross-validation to achieve the polynomial chaos expansion in order to reach the best approximate accuracy. The Sobol method was used to analyze the global sensitivity of polynomial chaos expansion surrogate model to study the influence of the random coupling action of vehicle and track parameters on the wheel vibration characteristics under the straight line and curve working conditions. The key factors were studied and the coupling action of multi-parameters was considered. The results show that the polynomial chaos expansion method can fit an accurate surrogate model based on the existing samples and calculate the Sobol sensitivity coefficient with an average error (less than 3%) so as to analyze the effect of the coupling of various parameterss on the wheel vibration efficiently and quantitatively. The vehicle parameters, such as the lateral stiffness of the boom node, the vertical stiffness of the primary spring, the lateral stiffness of the primary spring and the damping of the secondary transverse shock absorber, have an obvious contribution to the variance of the wheel vibration response. The track parameters, such as the lateral and vertical stiffnesses of the track, have a large contribution to the variance of the wheel vibration response. There are obvious interaction effects between the various parameters. 2 tabs, 16 figs, 31 refs.

     

  • loading
  • [1]
    杨光, 任尊松, 孙守光. 考虑弹性的高速旋转轮对振动特性研究[J]. 振动工程学报, 2016, 29(4): 714-719. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201604019.htm

    YANG Guang, REN Zun-song, SUN Shou-guang. Research on the vibration characteristics of high-speed rotation elastic wheelset[J]. Journal of Vibration Engineering, 2016, 29(4): 714-719. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201604019.htm
    [2]
    李哲, 高军伟, 张柏娜. 基于RFID的列车轮对识别与振动监控系统设计[J]. 仪表技术与传感器, 2020(11): 64-67, 73. doi: 10.3969/j.issn.1002-1841.2020.11.014

    LI Zhe, GAO Jun-wei, ZHANG Bai-na. Design of train wheelset identification and vibration monitoring system based on RFID[J]. Instrument Technique and Sensor, 2020(11): 64-67, 73. (in Chinese) doi: 10.3969/j.issn.1002-1841.2020.11.014
    [3]
    庞学苗, 李建伟, 邢宗义, 等. 基于频率切片小波变换的轨道列车轮对振动信号分析[J]. 铁道机车车辆, 2015, 35(增刊1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC2015S1008.htm

    PANG Xue-miao, LI Jian-wei, XING Zong-yi, et al. Analysis of wheel-rail vibration signal based on frequency sliced wavelet transform[J]. Railway Locomotive and Car, 2015, 35(Sup1): 26-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC2015S1008.htm
    [4]
    马卫华, 许自强, 罗世辉, 等. 轮轴弯曲刚度对轮轨垂向动态载荷影响分析[J]. 机械工程学报, 2012, 48(6): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201206016.htm

    MA Wei-hua, XU Zi-qiang, LUO Shi-hui, et al. Influence of the wheel axle bending stiffness on the wheel/rail vertical dynamical load[J]. Chinese Journal of Mechanical Engineering, 2012, 48(6): 96-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201206016.htm
    [5]
    张宝安. 柔性轮对结构振动对车辆动力学性能的影响[J]. 计算机辅助工程, 2013, 22(3): 19-23, 28. doi: 10.3969/j.issn.1006-0871.2013.03.004

    ZHANG Bao-an. Effect of structure vibration of flexible wheelset on vehicle dynamics performance[J]. Computer Aided Engineering, 2013, 22(3): 19-23, 28. (in Chinese) doi: 10.3969/j.issn.1006-0871.2013.03.004
    [6]
    HAUG E J, WEHAGE R A, MANI N K. Design sensitivity analysis of large-scale constrained dynamic mechanical systems[J]. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1984, 106(2): 156-162. doi: 10.1115/1.3258573
    [7]
    余衍然, 李成, 姚林泉, 等. 基于傅里叶幅值检验扩展法的轨道车辆垂向模型全局灵敏度分析[J]. 振动与冲击, 2014, 33(6): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201406014.htm

    YU Yan-ran, LI Cheng, YAO Lin-quan, et al. Global sensitivity analysis on vertical model of railway vehicle based on extended Fourier amplitude sensitivity test[J]. Journal of Vibration and Shock, 2014, 33(6): 77-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201406014.htm
    [8]
    张旭明, 王德信. 结构灵敏度分析的解析方法[J]. 河海大学学报, 1998, 26(5): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX805.008.htm

    ZHANG Xu-ming, WANG De-xin. Analytical method of structural sensitivity analysis[J]. Journal of Hohai University, 1998, 28(5): 47-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX805.008.htm
    [9]
    聂祚兴, 于德介, 李蓉, 等. 基于Sobol'法的车身噪声传递函数全局灵敏度分析[J]. 中国机械工程, 2012, 23(14): 1753-1757. doi: 10.3969/j.issn.1004-132X.2012.14.027

    NIE Zuo-xing, YU De-jie, LI Rong, et al. Global sensitivity analysis of autobodies' noise transfer functions based on Sobol' method[J]. China Mechanical Engineering, 2012, 23(14): 1753-1757. (in Chinese) doi: 10.3969/j.issn.1004-132X.2012.14.027
    [10]
    SOBOL I M, LEVITAN Y L. On the use of variance reducing multipliers in Monte Carlo computations of a global sensitivity index[J]. Computer Physics Communications, 1999, 117(1/2): 52-61.
    [11]
    SOBOL I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1/2/3): 271-280.
    [12]
    SOBOL I M. Theorems and examples on high dimensional model representation[J]. Reliability Engineering and System Safety, 2003, 79(2): 187-193. doi: 10.1016/S0951-8320(02)00229-6
    [13]
    BIGONI D, TRUE H, ENGSIG-KARUP A P. Sensitivity analysis of the critical speed in railway vehicle dynamics[J]. Vehicle System Dynamics, 2014, 52(Sup1): 272-286. doi: 10.1080/00423114.2014.898776
    [14]
    邵永生, 李成, 成明. 基于Sobol'法的轨道车辆平稳性的全局灵敏度分析[J]. 铁道科学与工程学报, 2018, 15(3): 748-754. doi: 10.3969/j.issn.1672-7029.2018.03.027

    SHAO Yong-sheng, LI Cheng, CHENG Ming. Sensitivity analysis of rail vehicle front end energy absorption structure based on Sobol' method[J]. Journal of Railway Science and Engineering, 2018, 15(3): 748-754. (in Chinese) doi: 10.3969/j.issn.1672-7029.2018.03.027
    [15]
    陈秉智, 汪驹畅. 基于Sobol'法的轨道车辆前端吸能结构灵敏度分析[J]. 铁道学报, 2020, 42(3): 63-68. doi: 10.3969/j.issn.1001-8360.2020.03.008

    CHEN Bing-zhi, WANG Ju-chang. Global sensitivity analysis of energy-absorbing structure for rail vehicle based on Sobol' method[J]. Journal of the China Railway Society, 2020, 42(3): 63-68. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.03.008
    [16]
    张慧云. 基于径向基函数网络的高速列车参数设计与优化[D]. 成都: 西南交通大学, 2015.

    ZHANG Hui-yun. The high-speed train parameter design and optimazation based on radial basis function[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese)
    [17]
    周生通, 祁强, 周新建, 等. 轴弯曲与不平衡柔性转子共振稳态响应随机分析[J]. 计算力学学报, 2020, 37(1): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202001004.htm

    ZHOU Sheng-tong, QI Qiang, ZHOU Xin-jian, et al. Stochastic analysis of resonance steady-state response of rotor with shaft bending and unbalance faults[J]. Chinese Journal of Computational Mechanics, 2020, 37(1): 20-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202001004.htm
    [18]
    周生通, 张沛, 肖乾, 等. 单盘悬臂转子启动过程峰值响应全局灵敏度分析[J]. 振动与冲击, 2021, 40(11): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202111004.htm

    ZHOU Sheng-tong, ZHANG Pei, XIAO Qian, et al. Global sensitivity analysis for peak response of a cantilevered rotor with single disc during start-up[J]. Journal of Vibration and Shock, 2021, 40(11): 17-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202111004.htm
    [19]
    周生通, 王迪, 肖乾, 等. 基于广义多项式混沌的跨座式单轨车辆随机平稳性分析[J]. 振动与冲击, 2021, 40(6): 190-200. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202106026.htm

    ZHOU Sheng-tong, WANG Di, XIAO Qian, et al. Stochastic stationarity analysis of a straddle monorail vehicle using the generalized polynomial chaos method[J]. Journal of Vibration and Shock, 2021, 40(6): 190-200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202106026.htm
    [20]
    FORMAGGIA L, GUADAGNINI A, IMPERIALI I, et al. Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction model[J]. Computational Geosciences, 2013, 17(1): 25-42. doi: 10.1007/s10596-012-9311-5
    [21]
    SUDRET B. Global sensitivity analysis using polynomial chaos expansions[J]. Reliability Engineering and System Safety, 2008, 93(7): 964-979. doi: 10.1016/j.ress.2007.04.002
    [22]
    GARCIA-CABREJO O, VALOCCHI A. Global sensitivity analysis for multivariate output using polynomial chaos expansion[J]. Reliability Engineering and System Safety, 2014, 126: 25-36. doi: 10.1016/j.ress.2014.01.005
    [23]
    黄悦琛, 宋长青, 郭荣化. 基于广义多项式混沌展开的无人机飞行性能不确定性分析[J]. 飞行力学, 2021, 39(4): 25-32, 51. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX202104005.htm

    HUANG Yue-chen, SONG Chang-qing, GUO Rong-hua. Uncertainty analysis of unmanned aerial vehicle flight performance using general polynomial chaos expansion[J]. Flight Dynamics, 2021, 39(4): 25-32, 51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX202104005.htm
    [24]
    王晗, 严正, 徐潇源, 等. 基于稀疏多项式混沌展开的孤岛微电网全局灵敏度分析[J]. 电力系统自动化, 2019, 43(10): 44-52. doi: 10.7500/AEPS20180625006

    WANG Han, YAN Zheng, XU Xiao-yuan, et al. Global sensitivity analysisfor islanded microgrid based on sparse polynomial chaos expansion[J]. Automation of Electric Power Systems, 2019, 43(10): 44-52. (in Chinese) doi: 10.7500/AEPS20180625006
    [25]
    刘安民, 高峰, 张青斌, 等. 基于多项式混沌展开方法的翼伞飞行不确定性[J]. 兵工学报, 2021, 42(7): 1392-1399. doi: 10.3969/j.issn.1000-1093.2021.07.006

    LIU An-min, GAO Feng, ZHANG Qing-bin, et al. Application of PCE method in parafoil-flight uncertainty analysis[J]. Acta Armamentarii, 2021, 42(7): 1392-1399. (in Chinese) doi: 10.3969/j.issn.1000-1093.2021.07.006
    [26]
    WIENER N, The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60(4): 897. doi: 10.2307/2371268
    [27]
    GHANEM R, GHOSH D. Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition[J]. International Journal For Numerical Methods in Engineering. 2007, 72(4): 486-504. doi: 10.1002/nme.2025
    [28]
    胡军, 张树道. 基于多项式混沌的全局敏感度分析[J]. 计算物理, 2016, 33(1): 1-14. doi: 10.3969/j.issn.1001-246X.2016.01.001

    HU Jun, ZHANG Shu-dao. Global sensitivity analysis based on polynomial chaos[J]. Chinese Journal of Computational Physics, 2016, 33(1): 1-14. (in Chinese) doi: 10.3969/j.issn.1001-246X.2016.01.001
    [29]
    赵威, 卜令泽, 王伟. 稀疏偏最小二乘回归-多项式混沌展开代理模型方法[J]. 工程力学, 2018, 35(9): 44-53. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201809007.htm

    ZHAO Wei, BU Ling-ze, WANG Wei. Sparse partial least squares regression-polynomial chaos expansion metamodeling method[J]. Engineering Mechanics, 2018, 35(9): 44-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201809007.htm
    [30]
    周如意, 丰文浩, 邓宗全, 等. 轮地力学模型参数灵敏度分析与主参数估计[J]. 航空学报, 2021, 42(1): 524076. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202101020.htm

    ZHOU Ru-yi, FENG Wen-hao, DENG Zong-quan, et al. Sensitivity analysis and dominant parameter estimation of wheel-terrain interaction model[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 524076. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202101020.htm
    [31]
    付娜, 李成辉, 赵振航, 等. 车辆-轨道耦合作用下桥上减振双块式无砟轨道减振性能研究[J]. 铁道科学与工程学报, 2018, 15(5): 1095-1102. doi: 10.3969/j.issn.1672-7029.2018.05.001

    FU Na, LI Cheng-hui, ZHAO Zhen-hang, et al. Study on the vibration reduction performance of double-block ballastless damping track on bridge under vehicle-track coupling effect[J]. Journal of Railway Science and Engineering, 2018, 15(5): 1095-1102. (in Chinese) doi: 10.3969/j.issn.1672-7029.2018.05.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (618) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return