Citation: | XIAO Qian, CHENG Yu-qi, LUO Jia-wen, ZHOU Sheng-tong, ZHOU Qian-zhe, CAO Tao-ying. Sensitivity analysis of high-speed train wheel vibration influenced by vehicle-track coupling[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 160-169. doi: 10.19818/j.cnki.1671-1637.2021.06.012 |
[1] |
杨光, 任尊松, 孙守光. 考虑弹性的高速旋转轮对振动特性研究[J]. 振动工程学报, 2016, 29(4): 714-719. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201604019.htm
YANG Guang, REN Zun-song, SUN Shou-guang. Research on the vibration characteristics of high-speed rotation elastic wheelset[J]. Journal of Vibration Engineering, 2016, 29(4): 714-719. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201604019.htm
|
[2] |
李哲, 高军伟, 张柏娜. 基于RFID的列车轮对识别与振动监控系统设计[J]. 仪表技术与传感器, 2020(11): 64-67, 73. doi: 10.3969/j.issn.1002-1841.2020.11.014
LI Zhe, GAO Jun-wei, ZHANG Bai-na. Design of train wheelset identification and vibration monitoring system based on RFID[J]. Instrument Technique and Sensor, 2020(11): 64-67, 73. (in Chinese) doi: 10.3969/j.issn.1002-1841.2020.11.014
|
[3] |
庞学苗, 李建伟, 邢宗义, 等. 基于频率切片小波变换的轨道列车轮对振动信号分析[J]. 铁道机车车辆, 2015, 35(增刊1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC2015S1008.htm
PANG Xue-miao, LI Jian-wei, XING Zong-yi, et al. Analysis of wheel-rail vibration signal based on frequency sliced wavelet transform[J]. Railway Locomotive and Car, 2015, 35(Sup1): 26-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC2015S1008.htm
|
[4] |
马卫华, 许自强, 罗世辉, 等. 轮轴弯曲刚度对轮轨垂向动态载荷影响分析[J]. 机械工程学报, 2012, 48(6): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201206016.htm
MA Wei-hua, XU Zi-qiang, LUO Shi-hui, et al. Influence of the wheel axle bending stiffness on the wheel/rail vertical dynamical load[J]. Chinese Journal of Mechanical Engineering, 2012, 48(6): 96-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201206016.htm
|
[5] |
张宝安. 柔性轮对结构振动对车辆动力学性能的影响[J]. 计算机辅助工程, 2013, 22(3): 19-23, 28. doi: 10.3969/j.issn.1006-0871.2013.03.004
ZHANG Bao-an. Effect of structure vibration of flexible wheelset on vehicle dynamics performance[J]. Computer Aided Engineering, 2013, 22(3): 19-23, 28. (in Chinese) doi: 10.3969/j.issn.1006-0871.2013.03.004
|
[6] |
HAUG E J, WEHAGE R A, MANI N K. Design sensitivity analysis of large-scale constrained dynamic mechanical systems[J]. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1984, 106(2): 156-162. doi: 10.1115/1.3258573
|
[7] |
余衍然, 李成, 姚林泉, 等. 基于傅里叶幅值检验扩展法的轨道车辆垂向模型全局灵敏度分析[J]. 振动与冲击, 2014, 33(6): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201406014.htm
YU Yan-ran, LI Cheng, YAO Lin-quan, et al. Global sensitivity analysis on vertical model of railway vehicle based on extended Fourier amplitude sensitivity test[J]. Journal of Vibration and Shock, 2014, 33(6): 77-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201406014.htm
|
[8] |
张旭明, 王德信. 结构灵敏度分析的解析方法[J]. 河海大学学报, 1998, 26(5): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX805.008.htm
ZHANG Xu-ming, WANG De-xin. Analytical method of structural sensitivity analysis[J]. Journal of Hohai University, 1998, 28(5): 47-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX805.008.htm
|
[9] |
聂祚兴, 于德介, 李蓉, 等. 基于Sobol'法的车身噪声传递函数全局灵敏度分析[J]. 中国机械工程, 2012, 23(14): 1753-1757. doi: 10.3969/j.issn.1004-132X.2012.14.027
NIE Zuo-xing, YU De-jie, LI Rong, et al. Global sensitivity analysis of autobodies' noise transfer functions based on Sobol' method[J]. China Mechanical Engineering, 2012, 23(14): 1753-1757. (in Chinese) doi: 10.3969/j.issn.1004-132X.2012.14.027
|
[10] |
SOBOL I M, LEVITAN Y L. On the use of variance reducing multipliers in Monte Carlo computations of a global sensitivity index[J]. Computer Physics Communications, 1999, 117(1/2): 52-61.
|
[11] |
SOBOL I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1/2/3): 271-280.
|
[12] |
SOBOL I M. Theorems and examples on high dimensional model representation[J]. Reliability Engineering and System Safety, 2003, 79(2): 187-193. doi: 10.1016/S0951-8320(02)00229-6
|
[13] |
BIGONI D, TRUE H, ENGSIG-KARUP A P. Sensitivity analysis of the critical speed in railway vehicle dynamics[J]. Vehicle System Dynamics, 2014, 52(Sup1): 272-286. doi: 10.1080/00423114.2014.898776
|
[14] |
邵永生, 李成, 成明. 基于Sobol'法的轨道车辆平稳性的全局灵敏度分析[J]. 铁道科学与工程学报, 2018, 15(3): 748-754. doi: 10.3969/j.issn.1672-7029.2018.03.027
SHAO Yong-sheng, LI Cheng, CHENG Ming. Sensitivity analysis of rail vehicle front end energy absorption structure based on Sobol' method[J]. Journal of Railway Science and Engineering, 2018, 15(3): 748-754. (in Chinese) doi: 10.3969/j.issn.1672-7029.2018.03.027
|
[15] |
陈秉智, 汪驹畅. 基于Sobol'法的轨道车辆前端吸能结构灵敏度分析[J]. 铁道学报, 2020, 42(3): 63-68. doi: 10.3969/j.issn.1001-8360.2020.03.008
CHEN Bing-zhi, WANG Ju-chang. Global sensitivity analysis of energy-absorbing structure for rail vehicle based on Sobol' method[J]. Journal of the China Railway Society, 2020, 42(3): 63-68. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.03.008
|
[16] |
张慧云. 基于径向基函数网络的高速列车参数设计与优化[D]. 成都: 西南交通大学, 2015.
ZHANG Hui-yun. The high-speed train parameter design and optimazation based on radial basis function[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese)
|
[17] |
周生通, 祁强, 周新建, 等. 轴弯曲与不平衡柔性转子共振稳态响应随机分析[J]. 计算力学学报, 2020, 37(1): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202001004.htm
ZHOU Sheng-tong, QI Qiang, ZHOU Xin-jian, et al. Stochastic analysis of resonance steady-state response of rotor with shaft bending and unbalance faults[J]. Chinese Journal of Computational Mechanics, 2020, 37(1): 20-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202001004.htm
|
[18] |
周生通, 张沛, 肖乾, 等. 单盘悬臂转子启动过程峰值响应全局灵敏度分析[J]. 振动与冲击, 2021, 40(11): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202111004.htm
ZHOU Sheng-tong, ZHANG Pei, XIAO Qian, et al. Global sensitivity analysis for peak response of a cantilevered rotor with single disc during start-up[J]. Journal of Vibration and Shock, 2021, 40(11): 17-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202111004.htm
|
[19] |
周生通, 王迪, 肖乾, 等. 基于广义多项式混沌的跨座式单轨车辆随机平稳性分析[J]. 振动与冲击, 2021, 40(6): 190-200. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202106026.htm
ZHOU Sheng-tong, WANG Di, XIAO Qian, et al. Stochastic stationarity analysis of a straddle monorail vehicle using the generalized polynomial chaos method[J]. Journal of Vibration and Shock, 2021, 40(6): 190-200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202106026.htm
|
[20] |
FORMAGGIA L, GUADAGNINI A, IMPERIALI I, et al. Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction model[J]. Computational Geosciences, 2013, 17(1): 25-42. doi: 10.1007/s10596-012-9311-5
|
[21] |
SUDRET B. Global sensitivity analysis using polynomial chaos expansions[J]. Reliability Engineering and System Safety, 2008, 93(7): 964-979. doi: 10.1016/j.ress.2007.04.002
|
[22] |
GARCIA-CABREJO O, VALOCCHI A. Global sensitivity analysis for multivariate output using polynomial chaos expansion[J]. Reliability Engineering and System Safety, 2014, 126: 25-36. doi: 10.1016/j.ress.2014.01.005
|
[23] |
黄悦琛, 宋长青, 郭荣化. 基于广义多项式混沌展开的无人机飞行性能不确定性分析[J]. 飞行力学, 2021, 39(4): 25-32, 51. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX202104005.htm
HUANG Yue-chen, SONG Chang-qing, GUO Rong-hua. Uncertainty analysis of unmanned aerial vehicle flight performance using general polynomial chaos expansion[J]. Flight Dynamics, 2021, 39(4): 25-32, 51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX202104005.htm
|
[24] |
王晗, 严正, 徐潇源, 等. 基于稀疏多项式混沌展开的孤岛微电网全局灵敏度分析[J]. 电力系统自动化, 2019, 43(10): 44-52. doi: 10.7500/AEPS20180625006
WANG Han, YAN Zheng, XU Xiao-yuan, et al. Global sensitivity analysisfor islanded microgrid based on sparse polynomial chaos expansion[J]. Automation of Electric Power Systems, 2019, 43(10): 44-52. (in Chinese) doi: 10.7500/AEPS20180625006
|
[25] |
刘安民, 高峰, 张青斌, 等. 基于多项式混沌展开方法的翼伞飞行不确定性[J]. 兵工学报, 2021, 42(7): 1392-1399. doi: 10.3969/j.issn.1000-1093.2021.07.006
LIU An-min, GAO Feng, ZHANG Qing-bin, et al. Application of PCE method in parafoil-flight uncertainty analysis[J]. Acta Armamentarii, 2021, 42(7): 1392-1399. (in Chinese) doi: 10.3969/j.issn.1000-1093.2021.07.006
|
[26] |
WIENER N, The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60(4): 897. doi: 10.2307/2371268
|
[27] |
GHANEM R, GHOSH D. Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition[J]. International Journal For Numerical Methods in Engineering. 2007, 72(4): 486-504. doi: 10.1002/nme.2025
|
[28] |
胡军, 张树道. 基于多项式混沌的全局敏感度分析[J]. 计算物理, 2016, 33(1): 1-14. doi: 10.3969/j.issn.1001-246X.2016.01.001
HU Jun, ZHANG Shu-dao. Global sensitivity analysis based on polynomial chaos[J]. Chinese Journal of Computational Physics, 2016, 33(1): 1-14. (in Chinese) doi: 10.3969/j.issn.1001-246X.2016.01.001
|
[29] |
赵威, 卜令泽, 王伟. 稀疏偏最小二乘回归-多项式混沌展开代理模型方法[J]. 工程力学, 2018, 35(9): 44-53. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201809007.htm
ZHAO Wei, BU Ling-ze, WANG Wei. Sparse partial least squares regression-polynomial chaos expansion metamodeling method[J]. Engineering Mechanics, 2018, 35(9): 44-53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201809007.htm
|
[30] |
周如意, 丰文浩, 邓宗全, 等. 轮地力学模型参数灵敏度分析与主参数估计[J]. 航空学报, 2021, 42(1): 524076. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202101020.htm
ZHOU Ru-yi, FENG Wen-hao, DENG Zong-quan, et al. Sensitivity analysis and dominant parameter estimation of wheel-terrain interaction model[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 524076. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202101020.htm
|
[31] |
付娜, 李成辉, 赵振航, 等. 车辆-轨道耦合作用下桥上减振双块式无砟轨道减振性能研究[J]. 铁道科学与工程学报, 2018, 15(5): 1095-1102. doi: 10.3969/j.issn.1672-7029.2018.05.001
FU Na, LI Cheng-hui, ZHAO Zhen-hang, et al. Study on the vibration reduction performance of double-block ballastless damping track on bridge under vehicle-track coupling effect[J]. Journal of Railway Science and Engineering, 2018, 15(5): 1095-1102. (in Chinese) doi: 10.3969/j.issn.1672-7029.2018.05.001
|