Volume 21 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
HOU Mao-rui, HU Xiao-yi, GUO Tao, LUO Jun, FAN Ling-ju. Effect of axle box rotary arm node performance on wheel-rail coupling vibration for high-speed EMUs[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 170-180. doi: 10.19818/j.cnki.1671-1637.2021.06.013
Citation: HOU Mao-rui, HU Xiao-yi, GUO Tao, LUO Jun, FAN Ling-ju. Effect of axle box rotary arm node performance on wheel-rail coupling vibration for high-speed EMUs[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 170-180. doi: 10.19818/j.cnki.1671-1637.2021.06.013

Effect of axle box rotary arm node performance on wheel-rail coupling vibration for high-speed EMUs

doi: 10.19818/j.cnki.1671-1637.2021.06.013
Funds:

National Natural Science Foundation of China U1734201

Project of Science and Technology Research and Development Plan of China Railway 2017G011-C

Project of Science and Technology of China Academy of Railway Sciences Co., Ltd 2019YJ162

More Information
  • Author Bio:

    HOU Mao-rui(1985-), male, associate professor, doctoral student, houmaorui@126.com

  • Corresponding author: HU Xiao-yi(1972-), male, professor, PhD, xiaoyihu@126.com
  • Received Date: 2021-06-06
    Available Online: 2022-02-11
  • Publish Date: 2021-12-01
  • To analyze the effect of axle box rotary arm node performance on the wheel-rail coupling vibration under wheel-rail short-wave irregularities such as rail corrugation and wheel polygon, the comprehensive research was conducted from three aspects, such as simulation calculation, field test, and bench test. A dynamics simulation model of a vehicle-track rigid-flexible coupling system was established to analyze the effects of rail corrugation and wheel polygon on the wheel-rail coupling vibration. The effects of new and old axle box rotary arm nodes on the axle box vibration responses under the rail corrugation and the bogie vibration responses under the high-order polygon were tested using a rolling test bench along the Wuhan-Guangzhou High-Speed Railway Line. 10 million fatigue durability tests were conducted on the type A and B axle box rotary arm nodes that have been in service for 1.2 million km, to demonstrate the fatigue reliability safety margins of the nodes. Research results show that the vibration accelerations of rails and axle box as well as the wheel-rail vertical force effectively remain unchanged with an increase in the radial stiffness of the axle box rotary arm node from 40 MN·m-1 to 200 MN·m-1, when the rail wavelength is 120 mm, the wheel polygon is of the 20th order, and the wave depths of rail corrugation and wheel polygon are both 0.04 mm. The change in the axle box rotary arm node stiffness will not significantly influence the wheel-rail coupling vibration responses under short-wave excitations such as rail corrugation and wheel polygon. With an increase in the number of fatigue test, the radial and axial stiffnesses of axle box rotary arm nodes decrease gradually. After 10 million fatigue durability tests, the appearances of the decommissioned axle box rotary arm nodes remain basically unchanged. Although the core shaft and rubber adhesive parts show slight tackle and cracking, the tackle and cracking depths are not more than 5 mm. The rubber body itself shows no cracks. In general, the performance still meets the General Technical Requirements for Rolling Stock Rubber to Metal Parts (TB/T 2843—2015). 3 tabs, 14 figs, 30 refs.

     

  • loading
  • [1]
    罗仁, 曾京, 戴焕云, 等. 高速动车组线路运行适应性[J]. 交通运输工程学报, 2011, 11(6): 37-43. http://transport.chd.edu.cn/article/id/201106006

    LUO Ren, ZENG Jing, DAI Huan-yun, et al. Running adaptability of high-speed EMU[J]. Journal of Traffic and Transportation Engineering, 2011, 11(6): 37-43. (in Chinese) http://transport.chd.edu.cn/article/id/201106006
    [2]
    侯茂锐, 刘丰收, 胡晓依, 等. 我国典型高速铁路轮轨型面变化规律及匹配特性[J]. 中国铁道科学, 2020, 41(4): 99-107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202004012.htm

    HOU Mao-rui, LIU Feng-shou, HU Xiao-yi, et al. Typical wheel-rail profile change and matching characteristics of high- speed railway in China[J]. China Railway Science, 2020, 41(4): 99-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202004012.htm
    [3]
    侯茂锐, 胡晓依, 宗仁莉, 等. 高速动车组转臂定位橡胶节点刚度对车辆动力学性能影响[J]. 中国铁道科学, 2021, 42(4): 120-128. doi: 10.3969/j.issn.1001-4632.2021.04.14

    HOU Mao-rui, HU Xiao-yi, ZONG Ren-li, et al. Influence of stiffness of arm positioning rubber node on vehicle dynamic performance for high-speed EMU[J]. China Railway Science, 2021, 42(4): 120-128. (in Chinese) doi: 10.3969/j.issn.1001-4632.2021.04.14
    [4]
    肖俊恒, 闫子权, 涂英辉, 等. 轮轨振动对高铁扣件伤损的影响分析[J]. 中国铁路, 2017(11): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201711002.htm

    XIAO Jun-heng, YAN Zi-quan, TU Ying-hui, et al. On impact of wheel-rail vibration on HSR fastener damage[J]. China Railway, 2017(11): 10-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201711002.htm
    [5]
    钱卿. 武广高铁车轮多边形综合整治研究[J]. 铁道机车车辆, 2019, 39(2): 50-54. doi: 10.3969/j.issn.1008-7842.2019.02.10

    QIAN Qing. Study on wheel polygon comprehensive improvement of Wuguang High-Speed Line[J]. Railway Locomotive and Car, 2019, 39(2): 50-54. (in Chinese) doi: 10.3969/j.issn.1008-7842.2019.02.10
    [6]
    王文静, 李广君, 唐薇, 等. 高速动车组轴箱弹簧疲劳失效机理研究[J]. 铁道学报, 2015, 37(6): 41-47. doi: 10.3969/j.issn.1001-8360.2015.06.006

    WANG Wen-jing, LI Guang-jun, TANG Wei, et al. Research on mechanism of fatigue crack of high speed train axle box spring[J]. Journal of the China Railway Society, 2015, 37(6): 41-47. (in Chinese) doi: 10.3969/j.issn.1001-8360.2015.06.006
    [7]
    钱铭. 我国铁路机车车辆修程修制改革初探[J]. 中国铁路, 2019(10): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201910001.htm

    QIAN Ming. Study on the reform of maintenance system and cycle for China's railway locomotive car[J]. China Railway, 2019(10): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201910001.htm
    [8]
    NIELSEN J C O, JOHANSSON A. Out-of-round railway wheels—a literature survey[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2000, 214(2): 79-91. doi: 10.1243/0954409001531351
    [9]
    金学松, 吴越, 梁树林, 等. 高速列车车轮多边形磨耗、机理、影响和对策分析[J]. 机械工程学报, 2020, 56(16): 118-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202016014.htm

    JIN Xue-song, WU Yue, LIANG Shu-lin, et al. Characteristics, mechanism, influences and countermeasures of polygonal wear of high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(16): 118-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202016014.htm
    [10]
    张隶新, 魏来, 王勇. 变刚度转臂定位节点对车辆动力学性能的影响[J]. 铁道车辆, 2016, 54(12): 1-4. doi: 10.3969/j.issn.1002-7602.2016.12.001

    ZHANG Li-xin, WEI Lai, WANG Yong. Effect of the positioning nodal point of rotary arm with variable stiffness on the dynamics performance of vehicles[J]. Rolling Stock, 2016, 54(12): 1-4. (in Chinese) doi: 10.3969/j.issn.1002-7602.2016.12.001
    [11]
    宋志坤, 王皓, 胡晓依, 等. 服役转臂节点刚度对运营车辆动力学影响研究[J]. 铁道学报, 2020, 42(4): 35-42. doi: 10.3969/j.issn.1001-8360.2020.04.005

    SONG Zhi-kun, WANG Hao, HU Xiao-yi, et al. Study on influence of stiffness of service nodal point of rotary arm on operation vehicle dynamics[J]. Journal of the China Railway Society, 2020, 42(4): 35-42. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.04.005
    [12]
    李密, 邬平波, 王玮, 等. 轴箱转臂定位节点温变特性对车辆动力学性能的影响[J]. 噪声与振动控制, 2018, 38(4): 111-115. doi: 10.3969/j.issn.1006-1355.2018.04.022

    LI Mi, WU Ping-bo, WANG Wei, et al. Influence of temperature varying characteristic of axle-box tumbler rubber nodes on vehicle's dynamics performance[J]. Noise and Vibration Control, 2018, 38(4): 111-115. (in Chinese) doi: 10.3969/j.issn.1006-1355.2018.04.022
    [13]
    BERG M. A non-linear rubber spring model for rail vehicle dynamics analysis[J]. Vehicle System Dynamics, 1998, 30(3/4): 197-212.
    [14]
    SHI Huai-long, WU Ping-bo. A nonlinear rubber spring model containing fractional derivatives for use in railroad vehicle dynamic analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230(7): 1745-1759. doi: 10.1177/0954409715614871
    [15]
    刘诗慧, 石怀龙, 王玮, 等. 基于物理参数的转向架定位橡胶节点动力学建模[J]. 交通运输工程学报, 2019, 19(6): 91-100. doi: 10.19818/j.cnki.1671-1637.2019.06.009

    LIU Shi-hui, SHI Huai-long, WANG Wei, et al. Dynamics modelling of positioning rubber joint of a bogie based on physical parameters[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 91-100. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.06.009
    [16]
    董博. 高速动车组轴箱转臂定位节点刚度演变及安全性能分析[J]. 铁道运输与经济, 2018, 40(9): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201809021.htm

    DONG Bo. A safety performance analysis and stiffness evolution of axle box arm positioning node of high speed EMU[J]. Railway Transport and Economy, 2018, 40(9): 110-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201809021.htm
    [17]
    何灼馀. 高速动车组转向架-系橡胶节点频率-刚度特性及其影响研究[D]. 成都: 西南交通大学, 2012.

    HE Zhuo-yu. Analysis of frequency-stiffness properties of primary suspension rubber joint in bogie of high-speed EMU and its influences[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)
    [18]
    卢翀, 戴贤春, 董博, 等. 轴箱定位节点有限元分析及试验研究[J]. 北京交通大学学报, 2018, 42(6): 91-96. doi: 10.11860/j.issn.1673-0291.2018.06.013

    LU Chong, DAI Xian-chun, DONG Bo, et al. Finite element analysis and test study of the axle box positioning joint[J]. Journal of Beijing Jiaotong University, 2018, 42(6): 91-96. (in Chinese) doi: 10.11860/j.issn.1673-0291.2018.06.013
    [19]
    祁亚运, 戴焕云, 魏来, 等. 变刚度转臂定位节点对地铁车辆车轮磨耗的影响[J]. 振动与冲击, 2019, 38(6): 100-107. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906015.htm

    QI Ya-yun, DAI Huan-yun, WEI Lai, et al. Influence of changing the rigid arm positioning node on the wheel wear of metro vehicles[J]. Journal of Vibration and Shock, 2019, 38(6): 100-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906015.htm
    [20]
    丁智平, 杨荣华, 黄友剑, 等. 变刚度橡胶球铰的刚度特性与疲劳寿命分析[J]. 振动与冲击, 2014, 33(2): 99-104. doi: 10.3969/j.issn.1000-3835.2014.02.020

    DING Zhi-ping, YANG Rong-hua, HUANG You-jian, et al. Analysis on the stiffness and fatigue life of variable stiffness rubber bushing[J]. Journal of Vibration and Shock, 2014, 33(2): 99-104. (in Chinese) doi: 10.3969/j.issn.1000-3835.2014.02.020
    [21]
    谷永磊, 赵国堂, 王衡禹, 等. 21-轨道振动特性对高速铁路钢轨波磨的影响[J]. 中国铁道科学, 2016, 37(4): 42-47. doi: 10.3969/j.issn.1001-4632.2016.04.07

    GU Yong-lei, ZHAO Guo-tang, WANG Heng-yu, et al. Effect of track vibration characteristics on rail corrugation of high speed railway[J]. China Railway Science, 2016, 37(4): 42-47. (in Chinese) doi: 10.3969/j.issn.1001-4632.2016.04.07
    [22]
    刘国云, 曾京, 张波. 钢轨波磨对高速车辆振动特性的影响[J]. 振动与冲击, 2019, 38(6): 137-143. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906021.htm

    LIU Guo-yun, ZENG Jing, ZHANG Bo. Influence of rail corrugation on high-speed vehicle vibration performances[J]. Journal of Vibration and Shock, 2019, 38(6): 137-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201906021.htm
    [23]
    吴磊, 钟硕乔, 金学松, 等. 车轮多边形化对车辆运行安全性能的影响[J]. 交通运输工程学报, 2011, 11(3): 47-54. doi: 10.3969/j.issn.1671-1637.2011.03.009

    WU Lei, ZHONG Shuo-qiao, JIN Xue-song, et al. Influence of polygonal wheel on running safety of vehicle[J]. Journal of Traffic and Transportation Engineering, 2011, 11(3): 47-54. (in Chinese) doi: 10.3969/j.issn.1671-1637.2011.03.009
    [24]
    刘佳, 韩健, 肖新标, 等. 高速车轮非圆化磨耗对轴箱端盖异常振动影响初探[J]. 机械工程学报, 2017, 53(20): 98-105. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201720013.htm

    LIU Jia, HAN Jian, XIAO Xin-biao, et al. Influence of wheel non-circular wear on axle box cover abnormal vibration in high-speed train[J]. Journal of Mechanical Engineering, 2017, 53(20): 98-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201720013.htm
    [25]
    吴越, 韩健, 刘佳, 等. 高速列车车轮多边形磨耗对轮轨力和转向架振动行为的影响[J]. 机械工程学报, 2018, 54(4): 37-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804006.htm

    WU Yue, HAN Jian, LIU Jia, et al. Effect of high-speed train polygonal wheels on wheel/rail contact force and bogie vibration[J]. Journal of Mechanical Engineering, 2018, 54(4): 37-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804006.htm
    [26]
    查浩, 任尊松, 徐宁. 车轮扁疤激起的轴箱轴承冲击特性[J]. 交通运输工程学报, 2020, 20(4): 165-173. doi: 10.19818/j.cnki.1671-1637.2020.04.013

    ZHA Hao, REN Zun-song, XU Ning. Impact characteristics of axle box bearing due to wheel flat scars[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 165-173. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.013
    [27]
    吴圣川, 任鑫焱, 康国政, 等. 铁路车辆部件抗疲劳评估的进展与挑战[J]. 交通运输工程学报, 2021, 21(1): 81-115. doi: 10.19818/j.cnki.1671-1637.2021.01.004

    WU Sheng-chuan, REN Xin-yan, KANG Guo-zheng, et al. Progress and challenge on fatigue resistance assessment of railway vehicle components[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 81-115. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.004
    [28]
    胡晓依, 侯银庆, 宋志坤, 等. 基于柔性轮轨模型的车轮谐波磨耗对高速轮轨系统振动影响的仿真研究[J]. 中国铁道科学, 2018, 39(6): 81-89. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201806012.htm

    HU Xiao-yi, HOU Yin-qing, SONG Zhi-kun, et al. Simulation study on influence of harmonic wear of wheel on vibration of high-speed wheel-rail system based on flexible wheel-rail model[J]. China Railway Science, 2018, 39(6): 81-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201806012.htm
    [29]
    郭涛, 侯银庆, 胡晓依, 等. 钢轨波磨对高速车辆动力学性能的影响[J]. 铁道建筑, 2019, 59(3): 111-115. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201903028.htm

    GUO Tao, HOU Yin-qing, HU Xiao-yi, et al. Influences of rail corrugations on dynamic performances of high speed vehicles[J]. Railway Engineering, 2019, 59(3): 111-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201903028.htm
    [30]
    朱海燕, 王超文, 邬平波, 等. 基于小滚轮高频激励的高速列车齿轮箱箱体振动试验[J]. 交通运输工程学报, 2020, 20(5): 135-150. doi: 10.19818/j.cnki.1671-1637.2020.05.011

    ZHU Hai-yan, WANG Chao-wen, WU Ping-bo, et al. High-speed train gearbox housing vibration test based on small roller high-frequency excitation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 135-150. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (479) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return