Citation: | QIN Rui-xian, GAO Feng, WANG Tie-cheng, CHEN Bing-zhi. Numerical simulation of bearing capacity of carbody for high-speed train subjected to longitudinal impact[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 209-224. doi: 10.19818/j.cnki.1671-1637.2021.06.016 |
[1] |
GAO Guang-jun, WANG Shuai. Crashworthiness of passenger rail vehicles: a review[J]. International Journal of Crashworthiness, 2019, 24(6): 664-676. doi: 10.1080/13588265.2018.1511233
|
[2] |
PENG Yong, HOU Lin, CHE Quan-wei, et al. Multi-objective robust optimization design of a front-end underframe structure for a high-speed train[J]. Engineering Optimization, 2019, 51(5): 753-774. doi: 10.1080/0305215X.2018.1495719
|
[3] |
LU Zhai-jun, LI Ben-huai, YANG Cheng-xing, et al. Numerical and experimental study on the design strategy of a new collapse zone structure for railway vehicles[J]. International Journal of Crashworthiness, 2017, 22(5): 488-502. doi: 10.1080/13588265.2017.1281080
|
[4] |
DING Zhao-yang, ZHENG Zhi-jun, YU Ji-lin. A wave propagation model of distributed energy absorption system for trains[J]. International Journal of Crashworthiness, 2019, 24(5): 508-522. doi: 10.1080/13588265.2018.1479482
|
[5] |
YU Yao, GAO Guang-jun, GUAN Wei-yuan, et al. Scale similitude rules with acceleration consistency for trains collision[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(10): 2466-2480. doi: 10.1177/0954409718773562
|
[6] |
QIN Rui-xian, CHEN Bing-zhi. Optimization design on functionally graded CEM for trains based on LPM model with calibrated parameters[J]. Shock and Vibration, 2020, 2020: 8884865.
|
[7] |
YAO Shu-guang, YAN Kai-bo, LU Si-si, et al. Energy-absorption optimisation of locomotives and scaled equivalent model validation[J]. International Journal of Crashworthiness, 2017, 22(4): 441-452. doi: 10.1080/13588265.2016.1276118
|
[8] |
张秧聪, 许平, 彭勇, 等. 高速列车前端多胞吸能结构的耐撞性优化[J]. 振动与冲击, 2017, 36(12): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201712006.htm
ZHANG Yang-cong, XU Ping, PENG Yong, et al. Crashworthiness optimization of high-speed train front multi-cell energy-absorbing structures[J]. Journal of Vibration and Shock, 2017, 36(12): 31-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201712006.htm
|
[9] |
XU Ping, LU Si-si, YAN Kai-bo, et al. Energy absorption design study of subway vehicles based on a scaled equivalent model test[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(1): 3-15. doi: 10.1177/0954409718777371
|
[10] |
STUART B, 阎锋. 整列车碰撞动态特性与提高列车防碰撞性总结报告[J]. 国外铁道车辆, 2017, 54(5): 1-7. doi: 10.3969/j.issn.1002-7610.2017.05.001
STUART B, YAN Feng. Summary report on dynamic behavior of the whole train in collisions and the improvement of the crashworthiness[J]. Foreign Rolling Stock, 2017, 54(5): 1-7. (in Chinese) doi: 10.3969/j.issn.1002-7610.2017.05.001
|
[11] |
田红旗. 客运列车耐冲击吸能车体设计方法[J]. 交通运输工程学报, 2001, 1(1): 110-114. doi: 10.3321/j.issn:1671-1637.2001.01.028
TIAN Hong-qi. Crashworthy energy absorbing car-body design method for passenger train[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 110-114. (in Chinese) doi: 10.3321/j.issn:1671-1637.2001.01.028
|
[12] |
UJITA Y. Evaluation of strength of end structures in intermediate rolling stock of a train during train collision accidents[J]. Quarterly Report of RTRI, 2014, 55(1): 14-19. doi: 10.2219/rtriqr.55.14
|
[13] |
王卉子, 李欣伟, 范乐天, 等. 新型高速动车组车体纵向承载能力分析[J]. 大连交通大学学报, 2013, 34(5): 29-32. doi: 10.3969/j.issn.1673-9590.2013.05.007
WANG Hui-zi, LI Xin-wei, FAN Le-tian, et al. Discussion of lengthway load carrying capacity of new type high speed train unit[J]. Journal of Dalian Jiaotong University, 2013, 34(5): 29-32. (in Chinese) doi: 10.3969/j.issn.1673-9590.2013.05.007
|
[14] |
CAROLAN M, PERLMAN B, TYRELL D. Crippling test of a Budd pioneer passenger car[C]//American Society of Mechanical Engineers. Proceedings of the ASME/ASCE/IEEE 2012 Joint Rail Conference. New York: American Society of Mechanical Engineers, 2012: 225-235.
|
[15] |
LLANA P, JACOBSEN K, STRINGFELLOW R. Locomotive crash energy management coupling tests evaluation and vehicle-to-vehicle test preparation[C]//American Society of Mechanical Engineers. Proceedings of the ASME/ASCE/IEEE 2019 Joint Rail Conference. New York: American Society of Mechanical Engineers, 2019: JRC2019-1259.
|
[16] |
LLANA P, JACOBSEN K, STRINGFELLOW R. Locomotive crash energy management vehicle-to-vehicle impact test results[C]//American Society of Mechanical Engineers. Proceedings of the ASME/ASCE/IEEE 2020 Joint Rail Conference. New York: American Society of Mechanical Engineers, 2020: JRC2020-8030.
|
[17] |
CAROLAN M, PERLMAN B, TYRELL D, et al. Crippling test of a Budd M-1 passenger railcar: test and analysis results[C]// American Society of Mechanical Engineers. Proceedings of the ASME/ASCE/IEEE 2014 Joint Rail Conference. New York: American Society of Mechanical Engineers, 2014: 336-246.
|
[18] |
CAROLAN M, MUHLANGER M, PERLMAN B, et al. Occupied volume integrity testing: elastic test results and analyses[C]//American Society of Mechanical Engineers. Proceedings of ASME 2011 Rail Transportation Division Fall Technical Conference. New York: American Society of Mechanical Engineers, 2011: RTDF2011-67010.
|
[19] |
LLANA P, JACOBSEN K, TYRELL D. Conventional Locomotive Coupling Tests[C]//American Society of Mechanical Engineers. Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition. New York: American Society of Mechanical Engineers, 2016: IMECE2016-67236.
|
[20] |
UJITA Y, 周贤全. 列车碰撞事故中中间车辆端部结构强度的评估[J]. 国外铁道车辆, 2016, 53(1): 41-45. doi: 10.3969/j.issn.1002-7610.2016.01.009
UJITA Y, ZHOU Xian-quan. Evaluation of the strength of the end structures in intermediate rolling stock of a train during collision accidents[J]. Foreign Rolling Stock, 2016, 53(1): 41-45. (in Chinese) doi: 10.3969/j.issn.1002-7610.2016.01.009
|
[21] |
早势刚, 彭惠民. 列车碰撞安全性研究[J]. 国外铁道机车与动车, 2017(2): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-GWMJ201702013.htm
HAYASHI Gang, PENG Hui-min. Research on the safety of train collision[J]. Foreign Railway Locomotive and Motor Car, 2017(2): 44-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWMJ201702013.htm
|
[22] |
川崎健, 蔡千华. 铁道车辆用铝合金吸能结构的准静态压缩试验及其数值分析[J]. 国外铁道车辆, 2009, 46(3): 24-29. doi: 10.3969/j.issn.1002-7610.2009.03.007
KAWASAKI K, CAI Qian-hua. Numerical analysis and quasi-static compression test on energy absorption[J]. Foreign Railway Vehicle, 2009, 46(3): 24-29. (in Chinese) doi: 10.3969/j.issn.1002-7610.2009.03.007
|
[23] |
唐愉真. 地铁车辆端梁主承载结构动态极限承载能力研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
TANG Yu-zhen. Study on dynamic ultimate bearing capacity of metro vehicle end beam main bearing structure[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
|
[24] |
严成, 欧卓成, 段卓平, 等. 脆性材料动态强度应变率效应[J]. 爆炸与冲击, 2011, 31(4): 423-427. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201104017.htm
YAN Cheng, OU Zhuo-cheng, DUAN Zhuo-ping, et al. Strain-rate effects on dynamic strength of brittle materials[J]. Explosion and Shock Waves, 2011, 31(4): 423-427. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201104017.htm
|
[25] |
彭一波, 王罡, 潘尚峰, 等. 考虑动态回复过程的6005A铝合金动态力学模型[J]. 机械工程学报, 2014, 50(10): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201410006.htm
PENG Yi-bo, WANG Gang, PAN Shang-feng, et al. 6005A aluminum dynamic mechanical model considering the dynamic recovery process[J]. Journal of Mechanical Engineering, 2014, 50(10): 32-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201410006.htm
|
[26] |
BÖRVIK T, CLAUSEN A H, ERIKSSON M, et al. Experimental and numerical study on the perforation of AA6005-T6 panels[J]. International Journal of Impact Engineering, 2005, 32(1): 35-64.
|
[27] |
OOSTERKAMP L D, IVANKOVIC A, VENIZELOS G. High strain rate properties of selected aluminium alloys[J]. Materials Science and Engineering A, 2000, 278(1): 225-235.
|
[28] |
PENG Yong, CHEN Xuan-zhen, PENG Shan, et al. Strain rate dependent constitutive and low stress triaxiality fracture behavior investigation of 6005 Al alloy[J]. Advances in Materials Science and Engineering, 2018, 2018: 2712937.
|
[29] |
CHEN Xuan-zhen, PENG Yong, PENG Shan, et al. Flow and fracture behavior of aluminum alloy 6082-T6 at different tensile strain rates and triaxialities[J]. PLoS One, 2017, 12(7): e0181983. doi: 10.1371/journal.pone.0181983
|
[30] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983, 21: 541-548.
|
[31] |
黄西成, 胡文军. Johnson-Cook本构参数的确定方法[C]//爆炸力学学会实验技术专业组. 第六届全国爆炸力学实验技术学术会议论文集. 长沙: 爆炸力学学会实验技术专业组, 2010: 308-315.
HUANG Xi-cheng, HU Wen-jun. Determining method for parameters of Johnson-Cook constitutive model[C]//Experimental Technical Professional Group of Institute of Explosive Mechanics. Proceedings of 6th National Conference on Experimental Technology of Explosive Mechanics. Changsha: Experimental Technical Professional Group of Institute of Explosive Mechanics, 2010: 308-315. (in Chinese)
|