Citation: | NIU Yi-jie, LI Hua, DENG Wu, FEI Ji-you, SUN Ya-li, LIU Zhi-bo. Rolling bearing fault diagnosis method based on TQWT and sparse representation[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 237-246. doi: 10.19818/j.cnki.1671-1637.2021.06.018 |
[1] |
NANDI S, TOLIYAT H A, LI X. Condition monitoring and fault diagnosis of electrical motors—a review[J]. IEEE Transactions on Energy Conversion, 2005, 20(4): 719-729. doi: 10.1109/TEC.2005.847955
|
[2] |
王国彪, 何正嘉, 陈雪峰, 等. 机械故障诊断基础研究"何去何从"[J]. 机械工程学报, 2013, 49(1): 63-72. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201301010.htm
WANG Guo-biao, HE Zheng-jia, CHEN Xue-feng, et al. Basic research on machinery fault diagnosis—what is the prescription[J]. Journal of Mechanical Engineering, 2013, 49(1): 63-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201301010.htm
|
[3] |
沈长青, 王旭, 王冬, 等. 基于多尺度卷积类内迁移学习的列车轴承故障诊断[J]. 交通运输工程学报, 2020, 20(5): 151-164. doi: 10.19818/j.cnki.1671-1637.2020.05.012
SHEN Chang-qing, WANG Xu, WANG Dong, et al. Multi-scale convolution intra-class transfer learning for train bearing fault diagnosis[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 151-164. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.012
|
[4] |
马小骏, 任淑红, 左洪福, 等. 基于LS-SVM算法和性能可靠性的航空发动机在翼寿命预测方法[J]. 交通运输工程学报, 2015, 15(3): 92-100. doi: 10.3969/j.issn.1671-1637.2015.03.013
MA Xiao-jun, REN Shu-hong, ZUO Hong-fu, et al. Prediction method of aero-engine life on wing based on LS-SVM algorithm and performance reliability[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 92-100. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.03.013
|
[5] |
KLEIN R, INGMAN D, BRAUN S. Non-stationary signals: phase-energy approach—theory and simulations[J]. Mechanical Systems and Signal Processing, 2001, 15(6): 1061-1089. doi: 10.1006/mssp.2001.1398
|
[6] |
FENG Zhi-peng, LIANG Ming, CHU Fu-lei. Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples[J]. Mechanical Systems and Signal Processing, 2013, 38(1): 165-205. doi: 10.1016/j.ymssp.2013.01.017
|
[7] |
ANTONI J. Cyclostationarity by examples[J]. Mechanical Systems and Signal Processing, 2009, 23(4): 987-1036. doi: 10.1016/j.ymssp.2008.10.010
|
[8] |
LEI Ya-guo, HE Zheng-jia, ZI Yan-yang. Application of the EEMD method to rotor fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2009, 23(4): 1327-1338. doi: 10.1016/j.ymssp.2008.11.005
|
[9] |
李奕璠, 刘建新, 林建辉, 等. 基于自适应多尺度形态学分析的车轮扁疤故障诊断方法[J]. 交通运输工程学报, 2015, 15(1): 58-65. doi: 10.3969/j.issn.1671-1637.2015.01.008
LI Yi-fan, LIU Jian-xin, LIN Jian-hui, et al. Fault diagnosis method of railway vehicle with wheel flat based on self-adaptive multi-scale morphology analysis[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 58-65. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.01.008
|
[10] |
YAN R Q, GAO R X, CHEN X F. Wavelets for fault diagnosis of rotary machines: a review with applications[J]. Signal Processing, 2014, 96: 1-15. doi: 10.1016/j.sigpro.2013.04.015
|
[11] |
张志禹, 吕延军, 张九龙, 等. 航空发动机转子碰摩故障瞬时频率诊断方法[J]. 交通运输工程学报, 2007, 7(4): 21-23. doi: 10.3321/j.issn:1671-1637.2007.04.005
ZHANG Zhi-yu, LYU Yan-jun, ZHANG Jiu-long, et al. Diagnosis method of instantaneous frequency for rotor impact-rub fault of aeroengine[J]. Journal of Traffic and Transportation Engineering, 2007, 7(4): 21-23. (in Chinese) doi: 10.3321/j.issn:1671-1637.2007.04.005
|
[12] |
SELESNICK I W. Wavelet transform with tunable Q-factor[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3560-3575. doi: 10.1109/TSP.2011.2143711
|
[13] |
LIU Ruo-nan, YANG Bo-yuan, ZIO E, et al. Artificial intelligence for fault diagnosis of rotating machinery: a review[J]. Mechanical Systems and Signal Processing, 2018, 108: 33-47. doi: 10.1016/j.ymssp.2018.02.016
|
[14] |
ZHANG Shen, ZHANG Shi-bo, WANG Bin-guan, et al. Deep learning algorithms for bearing fault diagnostics—a comprehensive review[J]. IEEE Access, 2020, 8: 29857-29881. doi: 10.1109/ACCESS.2020.2972859
|
[15] |
高倩, 陈晓英, 孙丽颖. 基于稀疏表示的TQWT在低频振荡信号去噪中应用[J]. 电力系统保护与控制, 2016, 44(13): 55-60. doi: 10.7667/PSPC151358
GAO Qian, CHEN Xiao-ying, SUN Li-ying. Low frequency oscillating signals denoising based on TQWT via sparse representation[J]. Power System Protection and Control, 2016, 44(13): 55-60. (in Chinese) doi: 10.7667/PSPC151358
|
[16] |
王霄, 谢平, 郭源耕, 等. 基于多字典-共振稀疏分解的脉冲故障特征提取[J]. 中国机械工程, 2019, 30(20): 2456-2462, 2472. doi: 10.3969/j.issn.1004-132X.2019.20.008
WANG Xiao, XIE Ping, GUO Yuan-geng, et al. Impulse fault signature extraction based on multi-dictionary resonance-based sparse signal decomposition[J]. China Mechanical Engineering, 2019, 30(20): 2456-2462, 2472. (in Chinese) doi: 10.3969/j.issn.1004-132X.2019.20.008
|
[17] |
CAI Gai-gai, CHEN Xue-feng, HE Zheng-jia. Sparsity-enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearbox[J]. Mechanical Systems and Signal Processing, 2013, 41(1/2): 34-53.
|
[18] |
ZHAO Zhi-bin, WANG Shi-bin, AN Bo-tao, et al. Hierarchical hyper- laplacian prior for weak fault feature enhancement[J]. ISA Transactions, 2020, 96: 429-443. doi: 10.1016/j.isatra.2019.06.007
|
[19] |
赵见龙, 张永超, 王立夫, 等. 基于共振稀疏分解与谱峭度的滚动轴承故障诊断[J]. 组合机床与自动化加工技术, 2019(4): 111-115. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJC201904027.htm
ZHAO Jian-long, ZHANG Yong-chao, WANG Li-fu, et al. Rolling bearing fault diagnosis based on resonance sparse decomposition and spectral kurtosis[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2019(4): 111-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJC201904027.htm
|
[20] |
孔运, 王天杨, 褚福磊. 自适应TQWT滤波器算法及其在冲击特征提取中的应用[J]. 振动与冲击, 2019, 38(11): 9-16, 23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201911003.htm
KONG Yun, WANG Tian-yang, CHU Fu-lei. Adaptive TQWT filter algorithm and its application in impact feature extraction[J]. Journal of Vibration and Shock, 2019, 38 (11): 9-16, 23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201911003.htm
|
[21] |
LI Jun-lin, WANG Hua-qing, SONG Liu-yang, et al. A novel feature extraction method for roller bearing using sparse decomposition based on self-adaptive complete dictionary[J]. Measurement, 2019, 148: 106934. doi: 10.1016/j.measurement.2019.106934
|
[22] |
FENG Z P, ZHOU Y K, ZUO M J, et al. Atomic decomposition and sparse representation for complex signal analysis in machinery fault diagnosis: a review with examples[J]. Measurement, 2017, 103: 106-132. doi: 10.1016/j.measurement.2017.02.031
|
[23] |
王宏超, 陈进, 董广明, 等. 可调品质因子小波变换在转子早期碰摩故障诊断中应用[J]. 振动与冲击, 2014, 33(10): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201410015.htm
WANG Hong-chao, CHEN Jin, DONG Guang-ming, et al. Early rub-impact diagnosis of rotors based on tunable Q-factor wavelet transformation[J]. Journal of Vibration and Shock, 2014, 33(10): 77-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201410015.htm
|
[24] |
BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202. doi: 10.1137/080716542
|
[25] |
何正嘉, 訾艳阳, 陈雪峰, 等. 内积变换原理与机械故障诊断[J]. 振动工程学报, 2007, 20(5): 528-533. doi: 10.3969/j.issn.1004-4523.2007.05.019
HE Zheng-jia, ZI Yan-yang, CHEN Xue-feng, et al. Transform principle of inner product for fault diagnosis[J]. Journal of Vibration Engineering, 2007, 20(5): 528-533. (in Chinese) doi: 10.3969/j.issn.1004-4523.2007.05.019
|
[26] |
苏文胜, 王奉涛, 张志新, 等. EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J]. 振动与冲击, 2010, 29(3): 18-21. doi: 10.3969/j.issn.1000-3835.2010.03.005
SU Wen-sheng, WANG Feng-tao, ZHANG Zhi-xin, et al. Application of EMD denoising and spectral kurtosis in early fault diagnosis of rolling element bearings[J]. Journal of Vibration and Shock, 2010, 29(3): 18-21. (in Chinese) doi: 10.3969/j.issn.1000-3835.2010.03.005
|
[27] |
ANTONI J. The spectral kurtosis: a useful tool for characterising non-stationary signals[J]. Mechanical Systems and Signal Processing, 2006, 20(2): 282-307. doi: 10.1016/j.ymssp.2004.09.001
|
[28] |
WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. doi: 10.1109/TPAMI.2008.79
|
[29] |
LI Yong-bo, WANG Xian-zhi, SI Shu-bin, et al. Entropy based fault classification using the case western reserve university data: a benchmark study[J]. IEEE Transactions on Reliability, 2020, 69(2): 754-767. doi: 10.1109/TR.2019.2896240
|
[30] |
SU W S, WANG F T, ZHU H, et al. Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement[J]. Mechanical Systems and Signal Processing, 2010, 24(5): 1458-1472. doi: 10.1016/j.ymssp.2009.11.011
|