Volume 21 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
ZHANG Long, ZHEN Can-zhuang, XIONG Guo-liang, WANG Chao-bing, XU Tian-peng, TU Wen-bing. Locomotive bearing fault diagnosis based on deep time-frequency features[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 247-258. doi: 10.19818/j.cnki.1671-1637.2021.06.019
Citation: ZHANG Long, ZHEN Can-zhuang, XIONG Guo-liang, WANG Chao-bing, XU Tian-peng, TU Wen-bing. Locomotive bearing fault diagnosis based on deep time-frequency features[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 247-258. doi: 10.19818/j.cnki.1671-1637.2021.06.019

Locomotive bearing fault diagnosis based on deep time-frequency features

doi: 10.19818/j.cnki.1671-1637.2021.06.019
Funds:

National Natural Science Foundation of China 51665013

Postgraduate Innovation Fund Project of Jiangxi Province YC2019-S243

Science and Technology Research Project of Jiangxi Education Department 191327

More Information
  • Author Bio:

    ZHANG Long(1980-), male, associate professor, PhD, longzh@126.com

  • Corresponding author: ZHEN Can-zhuang(1994-), male, master, 526991152@qq.com
  • Received Date: 2021-06-20
    Available Online: 2022-02-11
  • Publish Date: 2021-12-01
  • To address the problems such as the unsatisfactory fault feature extraction and low diagnostic accuracy of existing locomotive bearing diagnosis methods, a new method for diagnosing locomotive bearing faults was developed based on the deep time-frequency features. Dual-channel one-dimensional and two-dimensional convolutional neural networks (CNNs) were separately adopted to extract the deep features from the input one-dimensional original and two-dimensional time-frequency signals extracted by the continuous wavelet transform (CWT). A one-dimensional CNN was employed for the upper channel such that the input one-dimensional original signals could effectively reflect the global characteristics of the signals in the time domain. A two-dimensional CNN was applied for the lower channel such that the input two-dimensional time-frequency domain signals could reflect the subtle local changes in the signals from multiple angles. The upper- and lower-channel features were automatically fused in the fusion layer into a new deep time-frequency feature. Then, the extracted deep fusion time-frequency features were classified and identified by a normalized exponential function. Finally, seven types of locomotive bearing data measured in a locomotive depot were analyzed to verify the practical engineering application value of this method. Research results indicate that the average diagnosis accuracies of the proposed method for the seven types of locomotive bearing faults are as high as 100%. Compared with the one-dimensional CNN model, two-dimensional CNN model, and support vector machine (SVM) model, the average diagnosis accuracy of the proposed model increases by 0.7%, 1.9%, and 2.2%, respectively. The distribution intervals of each fault type in the deep time-frequency features are regular and orderly, and the intra-class spacing is very small. Conversely, the features extracted by the single one-dimensional and two-dimensional CNN models exhibit irregular distribution intervals for all fault types, and the intra-class spacing is large. This verifies the superiority of the proposed model in extracting deep features. Therefore, it is an effective model to address the issues in the locomotive bearing fault diagnosis. 4 tabs, 17 figs, 30 refs.

     

  • loading
  • [1]
    郑近德, 程军圣, 杨宇. 多尺度排列熵及其在滚动轴承故障诊断中的应用[J]. 中国机械工程, 2013, 24(19): 2641-2646. doi: 10.3969/j.issn.1004-132X.2013.19.017

    ZHENG Jin-de, CHENG Jun-sheng, YANG Yu. Multi-scale permutation entropy and its applications to rolling bearing fault diagnosis[J]. China Mechanical Engineering, 2013, 24(19): 2641-2646. (in Chinese) doi: 10.3969/j.issn.1004-132X.2013.19.017
    [2]
    邵海东, 张笑阳, 程军圣, 等. 基于提升深度迁移自动编码器的轴承智能故障诊断[J]. 机械工程学报, 2020, 56(9): 84-90. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202009011.htm

    SHAO Hai-dong, ZHANG Xiao-yang, CHENG Jun-sheng, et al. Intelligent fault diagnosis of bearing using enhanced deep transfer auto-encoder[J]. Journal of Mechanical Engineering, 2020, 56(9): 84-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202009011.htm
    [3]
    邓飞跃, 刘鹏飞, 陈恩利, 等. 基于自适应频率窗经验小波变换的列车轮对轴承多故障诊断[J]. 铁道学报, 2019, 41(5): 55-63. doi: 10.3969/j.issn.1001-8360.2019.05.007

    DENG Fei-yue, LIU Peng-fei, CHEN En-li, et al. Multiple fault diagnosis of train wheelset bearing based on adaptive frequency window empirical wavelet transform[J]. Journal of the China Railway Society, 2019, 41(5): 55-63. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.05.007
    [4]
    李永健, 宋浩, 刘吉华, 等. 基于改进多尺度排列熵的列车轴箱轴承诊断方法研究[J]. 铁道学报, 2020, 42(1): 33-39. doi: 10.3969/j.issn.1001-8360.2020.01.005

    LI Yong-jian, SONG Hao, LIU Ji-hua, et al. A study on fault diagnosis method for train axle box bearing based on modified multiscale permutation entropy[J]. Journal of the China Railway Society, 2020, 42(1): 33-39. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.01.005
    [5]
    孟宗, 胡猛, 谷伟明, 等. 基于LMD多尺度熵和概率神经网络的滚动轴承故障诊断方法[J]. 中国机械工程, 2016, 27(4): 433-437. doi: 10.3969/j.issn.1004-132X.2016.04.002

    MENG Zong, HU Meng, GU Wei-ming, et al. Rolling bearing fault diagnosis method based on LMD multi-scale entropy and probabilistic neural network[J]. China Mechanical Engineering, 2016, 27(4): 433-437. (in Chinese) doi: 10.3969/j.issn.1004-132X.2016.04.002
    [6]
    梁瑜, 贾利民, 蔡国强, 等. 滚动轴承的非线性动力学故障模型研究[J]. 中国铁道科学, 2014, 35(1): 98-104. doi: 10.3969/j.issn.1001-4632.2014.01.16

    LIANG Yu, JIA Li-min, CAI Guo-qiang, et al. Research on nonlinear dynamics fault model of rolling bearing[J]. China Railway Science, 2014, 35(1): 98-104. (in Chinese) doi: 10.3969/j.issn.1001-4632.2014.01.16
    [7]
    朱亚军, 胡建钦, 李武, 等. 基于频域窗函数的短时傅里叶变换及其在机械冲击特征提取中的应用[J]. 机床与液压, 2021, 49(18): 177-182. doi: 10.3969/j.issn.1001-3881.2021.18.035

    ZHU Ya-jun, HU Jian-qin, LI Wu, et al. Short-time Fourier transform based on frequency-domain window function and its application in mechanical impulse feature extraction[J]. Machine Tool and Hydraulics, 2021, 49(18): 177-182. (in Chinese) doi: 10.3969/j.issn.1001-3881.2021.18.035
    [8]
    SHEN Fei, CHEN Chao, XU Jia-wen, et al. A fast multi-tasking solution: NMF-theoretic co-clustering for gear fault diagnosis under variable working conditions[J]. Chinese Journal of Mechanical Engineering, 2020, 33(1): 16. doi: 10.1186/s10033-020-00437-3
    [9]
    ZHAO Wan-lin, WANG Zi-li, MA Jian, et al. Fault diagnosis of a hydraulic pump based on the CEEMD-STFT time-frequency entropy method and multiclass svm classifier[J]. Shock and Vibration, 2016, 2016: 2609856.
    [10]
    BANERJEE T P, DAS S. Multi-sensor data fusion using support vector machine for motor fault detection[J]. Information Sciences, 2012, 217: 96-107. doi: 10.1016/j.ins.2012.06.016
    [11]
    黄驰城. 结合时频分析和卷积神经网络的滚动轴承故障诊断优化方法研究[D]. 杭州: 浙江大学, 2019.

    HUANG Chi-cheng. Research on fault diagnosis and optimization method of rolling bearing based on time-frequency analysis and convolutional neural network[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
    [12]
    乔志城, 刘永强, 廖英英. 改进经验小波变换与最小熵解卷积在铁路轴承故障诊断中的应用[J]. 振动与冲击, 2021, 40(2): 81-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202102011.htm

    QIAO Zhi-cheng, LIU Yong-qiang, LIAO Ying-ying. Application of improved wavelet transform and minimum entropy deconvolution in railway bearing fault diagnosis[J]. Journal of Vibration and Shock, 2021, 40(2): 81-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202102011.htm
    [13]
    黄文艺. 基于特征优化与自主学习的滚动轴承故障诊断与性能退化评估[D]. 长沙: 湖南大学, 2019.

    HUANG Wen-yi. Fault diagnosis and performance degradation assessment of rolling bearing based on feature optimization and adaptive learning[D]. Changsha: Hunan University, 2019. (in Chinese)
    [14]
    张梅军, 唐建, 陈江海. 基于连续小波灰度图的变速箱故障诊断[J]. 振动、测试与诊断, 2007, 27(1): 65-67. doi: 10.3969/j.issn.1004-6801.2007.01.017

    ZHANG Mei-jun, TANG Jian, CHEN Jiang-hai. Fault diagnosis of gearbox based on continuous wavelet coefficients plot[J]. Journal of Vibration, Measurement and Diagnosis, 2007, 27(1): 65-67. (in Chinese) doi: 10.3969/j.issn.1004-6801.2007.01.017
    [15]
    QU Jin-xiu, ZHANG Zhuo-suo, GONG Teng. A novel intelligent method for mechanical fault diagnosis based on dual-tree complex wavelet packet transform and multiple classifier fusion[J]. Neurocomputing, 2016, 171: 837-853. doi: 10.1016/j.neucom.2015.07.020
    [16]
    项斌. 基于小波包和支持向量机的机车轴承故障诊断研究[D]. 兰州: 兰州交通大学, 2011.

    XIANG Bin. Research on locomotive bearing fault diagnosis based on wavelet packet and support vector machines[D]. Lanzhou: Lanzhou Jiaotong University, 2011. (in Chinese)
    [17]
    KESKES H, BRAHAM A, LACHIRI Z. Broken rotor bar diagnosis in induction machines through stationary wavelet packet transform and multiclass wavelet SVM[J]. Electric Power Systems Research, 2013, 97: 151-157. doi: 10.1016/j.epsr.2012.12.013
    [18]
    HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. doi: 10.1126/science.1127647
    [19]
    张西宁, 郭清林, 刘书语. 深度学习技术及其故障诊断应用分析与展望[J]. 西安交通大学学报, 2020, 54(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202012002.htm

    ZHANG Xi-ning, GUO Qing-lin, LIU Shu-yu. Analysis and prospect of deep learning technology and its fault diagnosis application[J]. Journal of Xi'an Jiaotong University, 2020, 54(2): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202012002.htm
    [20]
    JANSSENS O, SLAVKOVIKJ V, VERVISCH B, et al. Convolutional neural network based fault detection for rotating machinery[J]. Journal of Sound and Vibration, 2016, 377: 331-345. doi: 10.1016/j.jsv.2016.05.027
    [21]
    INCE T, KIRANYAZ S, EREN L, et al. Real-time motor fault detection by 1-D convolutional neural networks[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7067-7075. doi: 10.1109/TIE.2016.2582729
    [22]
    马云飞, 贾希胜, 白华军, 等. 基于一维CNN参数优化的压缩振动信号故障诊断[J]. 系统工程与电子技术, 2020, 42(9): 1911-1919. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202009006.htm

    MA Yun-fei, JIA Xi-sheng, BAI Hua-jun, et al. Fault diagnosis of compressed vibration signal based on 1-dimensional CNN with optimized parameters[J]. Systems Engineering and Engineering and Electronics, 2020, 42(9): 1911-1919. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202009006.htm
    [23]
    LEE D, SIU V, CRUZ R, et al. Convolutional neural net and bearing fault analysis[C]//CSREA Press. Proceedings of the International Conference on Data Mining Series. Barcelona: CSREA Press, 2016: 194-200.
    [24]
    ZHAO Ming-hang, KANG M S, TANG Bao-ping, et al. Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4290-4300. doi: 10.1109/TIE.2017.2762639
    [25]
    WANG Jin-jiang, ZHUANG Jun-fei, DUAN Li-xiang, et al. A multi-scale convolution neural network for featureless fault diagnosis[C]//IEEE. Proceedings of 2016 International Symposium on Flexible Automation. New York: IEEE, 2016: 65-70.
    [26]
    王丽华, 谢阳阳, 周子贤, 等. 基于卷积神经网络的异步电机故障诊断[J]. 振动、测试与诊断, 2017, 37(6): 1208-1215, 1283. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201706023.htm

    WANG Li-hua, XIE Yang-yang, ZHOU Zi-xian, et al. Motor fault diagnosis based on convolutional neural network[J]. Journal of Vibration, Measurement and Diagnosis, 2017, 37(6): 1208-1215, 1283. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201706023.htm
    [27]
    张龙, 蔡秉桓, 熊国良, 等. 优化指标一致的滚动轴承故障复合诊断方法[J]. 振动与冲击, 2021, 40(9): 237-245. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202109032.htm

    ZHANG Long, CAI Bing-huan, XIONG Guo-liang, et al. Composite fault diagnosis method of rolling bearing based on consistent optimization index[J]. Journal of Vibration and Shock, 2021, 40(9): 237-245. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202109032.htm
    [28]
    李涛, 段礼祥, 张东宁, 等. 自适应卷积神经网络在旋转机械故障诊断中的应用[J]. 振动与冲击, 2020, 39(16): 275-282, 288. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202016037.htm

    LI Tao, DUAN Li-xiang, ZHANG Dong-ning, et al. Application of adaptive convolutional neural network in rotating machinery fault diagnosis[J]. Journal of Vibration and Shock, 2020, 39(16): 275-282, 288. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202016037.htm
    [29]
    张淑清, 包红燕, 李盼, 等. 基于RQA与GG聚类的滚动轴承故障识别[J]. 中国机械工程, 2015, 26(10): 1385-1390. doi: 10.3969/j.issn.1004-132X.2015.10.019

    ZHANG Shu-qing, BAO Hong-yan, LI Pan, et al. Fault diagnosis of rolling bearings based on RQA and GG clustering[J]. China Mechanical Engineering, 2015, 26(10): 1385-1390. (in Chinese) doi: 10.3969/j.issn.1004-132X.2015.10.019
    [30]
    张立国, 李盼, 李梅梅, 等. 基于ITD模糊熵和GG聚类的滚动轴承故障诊断[J]. 仪器仪表学报, 2014, 35(11): 2624-2632. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201411027.htm

    ZHANG Li-guo, LI Pan, LI Mei-mei, et al. Fault diagnosis of rolling bearing based on ITD fuzzy entropy and GG clustering[J]. Chinese Journal of Scientific Instrument, 2014, 35(11): 2624-2632. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201411027.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (483) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return