Volume 22 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
LU Yao-hui, LI Zhen-sheng, YIN Xiao-chun, SONG Cheng-yu, LIU Xi, LU Chuan. Calculation methods of stress factor in welding seam quality grade evaluation of EMUs aluminum alloy car body[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 133-140. doi: 10.19818/j.cnki.1671-1637.2022.01.011
Citation: LU Yao-hui, LI Zhen-sheng, YIN Xiao-chun, SONG Cheng-yu, LIU Xi, LU Chuan. Calculation methods of stress factor in welding seam quality grade evaluation of EMUs aluminum alloy car body[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 133-140. doi: 10.19818/j.cnki.1671-1637.2022.01.011

Calculation methods of stress factor in welding seam quality grade evaluation of EMUs aluminum alloy car body

doi: 10.19818/j.cnki.1671-1637.2022.01.011
Funds:

National Natural Science Foundation of China 51275428

National Natural Science Foundation of China 51775450

National Natural Science Foundation of China 51875482

Sichuan Science and Technology Program 2022YFG0251

More Information
  • Author Bio:

    LU Yao-hui(1973-), male, professor, PhD, yhlu2000@swjtu.edu.cn

  • Received Date: 2021-07-23
  • Publish Date: 2022-02-25
  • The finite element analysis model of the aluminum alloy welded car body for a type of electric multiple units (EMUs) was established. The welding seam was simplified modeling, and the difference between the welding seam and the actual existence was corrected in the calculation of the equivalent structural stress. The loads on the car body were analyzed based on BS EN 12663-1:2010. Nine fatigue load cases of car body were determined by the Box-Behnken orthogonal matrix design. A multi-axial load was applied to the finite element model of car body, and the stress distribution of the four long welding seams on the car body side wall were analyzed. Six concerned points for stress factor calculations were identified. The stress factors of welding seams on the car body side wall were calculated by using the nominal stress method and the equivalent structural stress method. Two stress analysis methods were compared and analyzed. Analysis results show that the allowable stress ranges of the two stress analysis methods are different at 1.0×107 cycles, with a nominal stress of 16.40 MPa and an equivalent structural stress of 26.61 MPa. The nominal stress ranges of the six concerned points are all smaller than the equivalent structural stress ranges, and the obtained stress factors of the nominal stress and equivalent structural stress are 0.33, 0.25, 0.50, 0.49, 0.76, 0.62 and 0.23, 0.24, 0.39, 0.45, 0.61, 0.48, respectively. For the concerned points of the same welding seam, the stress factors obtained by the nominal stress method are greater than the values obtained by the equivalent structural stress method. The nominal stress method has a large dispersion, which leads to a large stress factor. The structural stress method has a clearer physical meaning, and the calculated stress factor is more reasonable. 2 tabs, 8 figs, 30 refs.

     

  • loading
  • [1]
    康兴东, 任玉鑫, 高超, 等. 铁路客车车体结构材料的演变与展望[J]. 铁道机车车辆, 2019, 39(2): 119-124. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201902028.htm

    KANG Xing-dong, REN Yu-xin, GAO Chao, et al. Evolution and prospect of railway passenger car carbody structure materials[J]. Railway Locomotive and Car, 2019, 39(2): 119-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201902028.htm
    [2]
    王剑, 孙畅, 马纪军. 基于BS EN 15085标准的焊缝质量评估方法[J]. 计算机辅助工程, 2018, 27(3): 11-14, 53. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201803003.htm

    WANG Jian, SUN Chang, MA Ji-jun. Evaluation method of weld quality based on BS EN 15085 standard[J]. Computer Aided Engineering, 2018, 27(3): 11-14, 53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201803003.htm
    [3]
    PAMNANI R, VASUDEVAN M, JAYAKUMAR T, et al. Numerical simulation and experimental validation of arc welding of DMR-249A steel[J]. Defence Technology, 2016, 12(4): 305-315. doi: 10.1016/j.dt.2016.01.012
    [4]
    LI D, YANG X, CUI L, et al. Fatigue property of stationary shoulder friction stir welded additive and non-additive T joints[J]. Science and Technology of Welding and Joining, 2015, 20(8): 650-654. doi: 10.1179/1362171815Y.0000000045
    [5]
    BRTDER T, STÖRZEL K, BAUMGARTNER J, et al. Evaluation of nominal and local stress based approaches for the fatigue assessment of seam welds[J]. International Journal of Fatigue, 2012, 34(1): 86-102. doi: 10.1016/j.ijfatigue.2011.06.002
    [6]
    FRICKE W, REMES H, FELTZ O, et al. Fatigue strength of laser-welded thin-plate ship structures based on nominal and structural hot-spot stress approach[J]. Ships and Offshore Structures, 2015, 10(1): 39-44. doi: 10.1080/17445302.2013.850208
    [7]
    DONG P. A structural stress definition and numerical implementation for fatigue analysis of welded joints[J]. International Journal of Fatigue, 2001, 23(10): 865-876. doi: 10.1016/S0142-1123(01)00055-X
    [8]
    BRUDER T, ST RZEL K, BAUMGARTNER J, et al. Evaluation of nominal and local stress based approaches for the fatigue assessment of seam welds[J]. International Journal of Fatigue, 2012, 34(1): 86-102. doi: 10.1016/j.ijfatigue.2011.06.002
    [9]
    秦叔经. 压力容器中焊接接头的疲劳分析方法[J]. 化工设备与管道, 2019, 56(6): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSB201906001.htm

    QIN Shu-jing. Fatigue analysis methods for welds in pressure vessel[J]. Process Equipment and Piping, 2019, 56(6): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGSB201906001.htm
    [10]
    卢耀辉, 张德文, 赵智堂, 等. 焊接残余应力对动车组铝合金车体疲劳强度的影响[J]. 交通运输工程学报, 2019, 19(4): 94-103. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201904011.htm

    LU Yao-hui, ZHANG De-wen, ZHAO Zhi-tang, et al. Influence of welding residual stress on fatigue strength for EMU aluminum alloy carbody[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 94-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201904011.htm
    [11]
    DONG P S, HONG J K. The master S-N curve approach to fatigue of piping and vessel welds[J]. Welding in the World. 2004, 48(1/2): 28-36.
    [12]
    李向伟. 基于主S-N曲线法的焊接结构疲劳寿命预测系统开发和关键技术[J]. 计算机辅助工程, 2014, 23(4): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201404012.htm

    LI Xiang-wei. Development and key technologies of welded structure fatigue life prediction system based on master S-N curve method[J]. Computer Aided Engineering, 2014, 23(4): 46-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201404012.htm
    [13]
    兆文忠, 李季涛, 李晓峰, 等. 高速动车组角焊缝应力集中的识别方法[J]. 中国铁道科学, 2018, 39(1): 82-87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201801013.htm

    ZHAO Wen-zhong, LI Ji-tao, LI Xiao-feng, et al. Identification method for stress concentration on fillet weld of high-speed EMU[J]. China Railway Science, 2018, 39(1): 82-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201801013.htm
    [14]
    谢素明, 莫浩, 牛春亮, 等. 基于结构应力法的焊接构架应力状态研究[J]. 大连交通大学学报, 2019, 40(1): 36-39. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201901008.htm

    XIE Su-ming, MO Hao, NIU Chun-liang, et al. Research on stress state of welded frame based on structural stress method[J]. Journal of Dalian Jiaotong University, 2019, 40(1): 36-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201901008.htm
    [15]
    WEI Guo-qian, OCHBILEG O, YUE Xu-dong, et al. Combine S-N curve and fracture mechanics for fatigue life analysis of welded structures[J]. China Welding, 2019, 28(4): 39- 45.
    [16]
    JUN Yun-yu, JUNG Y S, LE D Y, et al. Fatigue crack evaluation on the underframe of EMU carbody[J]. Procedia Engineering, 2010, 2(1): 893-900. doi: 10.1016/j.proeng.2010.03.096
    [17]
    LU Yao-hui, DANG Lin-yuan, ZHANG Xing, et al. Analysis of the dynamic response and fatigue reliability of a full-scale carbody of a high-speed train[J]. Journal of Rail and Rapid Transit, 2018, 232(7): 2006-2023. doi: 10.1177/0954409718757295
    [18]
    KIM J S. Fatigue assessment of tilting bogie frame for Korean tilting train: analysis and static tests[J]. Engineering Failure Analysis, 2005, 13(8): 1326-1337.
    [19]
    阳光武, 赵科, 肖守讷, 等. 基于拉弯比的焊缝名义应力的提取[J]. 工程设计学报, 2011, 18(6): 423-427. https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ201106008.htm

    YANG Guang-wu, ZHAO Ke, XIAO Shou-ne, et al. Nominal stress extraction of weld based on ratio of tension and bending[J]. Journal of Engineering Design, 2011, 18(6): 423-427. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCSJ201106008.htm
    [20]
    LILLEMÄE I, REMES H, LⅡNALAMPI S, et al. Influence of weld quality on the fatigue strength of thin normal and high strength steel butt joints[J]. Welding in the World, 2016, 60(4): 731-740.
    [21]
    卢耀辉, 冯振, 陈天利, 等. 铁道车辆转向架构架多轴疲劳强度有限元分析方法[J]. 北京交通大学学报, 2014, 38(4): 26-31, 39. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201404006.htm

    LU Yao-hui, FENG Zhen, CHEN Tian-li, et al. Finite element analysis of multi-axial fatigue strength for railway vehicle bogie frame[J]. Journal of Beijing Jiaotong University, 2014, 38(4): 26-31, 39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201404006.htm
    [22]
    MEI J, DONG P S. An equivalent stress parameter for multi-axial fatigue evaluation of welded components including non-proportional loading effects[J]. International Journal of Fatigue, 2017, 101: 297-311.
    [23]
    LU Yao-hui, BI Wei, ZHANG Xing, et al. Calculation method of dynamic loads spectrum and effects on fatigue damage of a full-scale carbody for high-speed trains[J]. Vehicle System Dynamics, 2020, 58(7): 1037-1056.
    [24]
    DONG P. Arobust structural stress method for fatigue analysis of offshore/marine structures[J]. Journal of Offshore Mechanics and Arctic Engineering, 2005, 127(1): 68-74.
    [25]
    KYUBA H, DONG P S. Equilibrium-equivalent structural stress approach to fatigue analysis of a rectangular hollow section joint[J]. International Journal of Fatigue, 2004, 27(1): 85-94.
    [26]
    LU Yao-hui, ZHENG He-yan, LU Chuan, et al. Analysis methods of the dynamic structural stress in a full-scale welded carbody for high-speed trains[J]. Advances in Mechanical Engineering, 2018, 10(10): 1-16.
    [27]
    周张义, 李芾. 基于表面外推的热点应力法平板焊趾疲劳分析研究[J]. 铁道学报, 2009, 31(5): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200905016.htm

    ZHOU Zhang-yi, LI Fu. Study on fatigue analysis of welded toes of plate structures using hot spot stress method based on surface extrapolation[J]. Journal of the China Railway Society, 2009, 31(5): 90-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200905016.htm
    [28]
    卢耀辉, 冯振, 曾京, 等. 高速列车车体动应力分析方法及寿命预测研究[J]. 铁道学报, 2016, 38(9): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201609005.htm

    LU Yao-hui, FENG Zhen, ZENG Jing, et al. Research on dynamic stress analysis methods and prediction of fatigue life for carbody of high speed train[J]. Journal of the China Railway Society, 2016, 38(9): 31-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201609005.htm
    [29]
    马思群, 谷理想, 袁永文, 等. 焊接缺陷对动车组铝合金车体疲劳寿命影响研究[J]. 铁道学报, 2014, 36(2): 42-48. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201402008.htm

    MA Si-qun, GU Li-xiang, YUAN Yong-wen, et al. Research on influence of welding defects on fatigue life of EMU aluminum-alloy car body[J]. Journal of the China Railway Society, 2014, 36(2): 42-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201402008.htm
    [30]
    周韶泽, 王超远, 李向伟, 等. 焊接接头质量等级评定方法与系统开发[J]. 机械研究与应用, 2020, 33(2): 164-167. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYJ202002052.htm

    ZHOU Shao-ze, WANG Chao-yuan, LI Xiang-wei, et al. Research and development of welded joint quality grade assessment system[J]. Mechanical Research and Application, 2020, 33(2): 164-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXYJ202002052.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (756) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return