Citation: | LI Jie, TAO Long, GU Jia-ling, CHEN Cheng, CHEN Ying. Review on convective heat transfer in internal channel of ventilated brake disc of vehicle[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 19-40. doi: 10.19818/j.cnki.1671-1637.2022.02.002 |
[1] |
JI Peng, WU Fan, ZHANG Guo-liang, et al. A novel numerical approach for investigation of the heat transport in a full 3D brake system of high-speed trains[J]. Numerical Heat Transfer, Part A: Applications, 2019, 75(12): 824-840. doi: 10.1080/10407782.2019.1608767
|
[2] |
PARISH D, MACMANUS D G. Aerodynamic investigations of ventilated brake discs[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2005, 219(4): 471-486. doi: 10.1243/095440705X11121
|
[3] |
BELHOCINE A, AFZAL A. Finite element modeling of thermomechanical problems under the vehicle braking process[J]. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2020, 3(1): 53-76. doi: 10.1007/s41939-019-00059-w
|
[4] |
SCHUETZ T. Cooling analysis of a passenger car disk brake[C]//SAE. SAE 2009 Brake Colloquium and Exhibition. Washington DC: SAE, 2009: 1-8.
|
[5] |
JIANG Lan, JIANG Yan-li, YU Liang, et al. Thermal analysis for brake disks of SiC/6061 Al alloy co-continuous composite for CRH3 during emergency braking considering airflow cooling[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(11): 2783-2791. doi: 10.1016/S1003-6326(11)61533-1
|
[6] |
PEVEC M, POTRC I, BOMBEK G, et al. Prediction of the cooling factors of a vehicle brake disc and its influence on the results of a thermal numerical simulation[J]. International Journal of Automotive Technology, 2012, 13(5): 725-733. doi: 10.1007/s12239-012-0071-y
|
[7] |
NEWCOMB T P, MILLNER N. Cooling rates of brake drums and discs[J]. Proceedings of the Institution of Mechanical Engineers: Automobile Division, 1965, 180(1): 191-205. doi: 10.1243/PIME_AUTO_1965_180_019_02
|
[8] |
GUO Z Y, LI D Y, WANG B X. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 1998, 41(14): 2221-2225. doi: 10.1016/S0017-9310(97)00272-X
|
[9] |
过增元. 对流换热的物理机制及其控制: 速度场与热流场的协同[J]. 科学通报, 2000, 45(19): 2118-2122. doi: 10.3321/j.issn:0023-074X.2000.19.020
GUO Zeng-yuan. Physical mechanism and control of convective heat transfer: synergy of velocity field and heat flow field[J]. Chinese Science Bulletin, 2000, 45(19): 2118-2122. (in Chinese) doi: 10.3321/j.issn:0023-074X.2000.19.020
|
[10] |
过增元, 庄文红. 对流换热的物理机制分析及其应用[J]. 工程热物理学报, 1992, 13(1): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB199201011.htm
GUO Zeng-yuan, ZHUANG Wen-hong. Analysis of physical mechanism of convective heat transfer and its application[J]. Journal of Engineering Thermophysics, 1992, 13(1): 52-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB199201011.htm
|
[11] |
RIVERA-LÓPEZ J E, GARCÍA-LEÓN R A, QUINTERO-OROZCO A, et al. Thermal and fluid-dynamic analysis of an automotive disc brake with ventilation pillars aerodynamic type[J]. Journal of Physics: Conference Series, 2019, 1386(1): 012112. doi: 10.1088/1742-6596/1386/1/012112
|
[12] |
LEÓN R A G, ROJAS E P. Analysis of the amount of heat flow between cooling channels in three vented brake discs[J]. Ingenieria y Universidad, 2017, 21(1): 71-96.
|
[13] |
BELHOCINE A, BOUCHETARA M. Investigation of temperature and thermal stress in ventilated disc brake based on 3D thermomechanical coupling model[J]. Ain Shams Engineering Journal, 2013, 4(3): 475-483. doi: 10.1016/j.asej.2012.08.005
|
[14] |
WALLIS L, LEONARDI E, MILTON B, et al. Air flow and heat transfer in ventilated disc brake rotors with diamond and tear-drop pillars[J]. Numerical Heat Transfer, Part A: Applications, 2002, 41(6/7): 643-655.
|
[15] |
REDDY S M, MALLIKARJUNA J M, GANESAN V. Flow and heat transfer analysis of a ventilated disc brake rotor using CFD[C]//SAE. SAE 2008 World Congress and Exhibition. Washington DC: SAE, 2008: 1-10.
|
[16] |
CHOPADE M, VALAVADE A. Experimental investigation using CFD for thermal performance of ventilated disc brake rotor[J]. International Journal of Automotive Technology, 2017, 18(2): 235-244. doi: 10.1007/s12239-017-0023-7
|
[17] |
RAJAGOPAL T K R, RAMACHANDRAN R, JAMES M, et al. Numerical investigation of fluid flow and heat transfer characteristics on the aerodynamics of ventilated disc brake rotor using CFD[J]. Thermal Science, 2014, 18(2): 667-675. doi: 10.2298/TSCI111219204R
|
[18] |
MAHMOD M I, MUNISAMY K M. Experimental analysis of ventilated brake disc with different blade configuration[J]. Department of mechanical Engineering, 2011, 1: 1-9.
|
[19] |
VOLLER G P, TIROVIC M, MORRIS R, et al. Analysis of automotive disc brake cooling characteristics[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217(8): 657-666. doi: 10.1243/09544070360692050
|
[20] |
JOHNSON D A, SPERANDEI B A, GILBERT R. Analysis of the flow through a vented automotive brake rotor[J]. Journal of Fluids Engineering, 2003, 125(6): 979-986. doi: 10.1115/1.1624426
|
[21] |
MCPHEE A D, JOHNSON D A. Experimental heat transfer and flow analysis of a vented brake rotor[J]. International Journal of Thermal Sciences, 2008, 47(4): 458-467. doi: 10.1016/j.ijthermalsci.2007.03.006
|
[22] |
ATKINS M D, KIENHÖFER F W, KIM T. Flow behavior in radial vane disk brake rotors at low rotational speeds[J]. Journal of Fluids Engineering, Transactions of the ASME, 2019, 141(8): 081105. doi: 10.1115/1.4042470
|
[23] |
BOMBEK G, LEŠNIK L, BILUŠ I. Experimental analysis of brake disc cooling capacity[J]. Trans Motauto World, 2017, 2(2): 58-60.
|
[24] |
BAI Xiao-hui, ZHENG Zi-hao, NAKAYAMA A. Heat transfer performance analysis on lattice core sandwich panel structures[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118525. doi: 10.1016/j.ijheatmasstransfer.2019.118525
|
[25] |
吴波, 孙磊. 基于流固耦合传热的制动盘瞬态温度场研究[J]. 机械设计与制造, 2020, 352(6): 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ202006030.htm
WU Bo, SUN Lei. Study on transient temperature field of brake disc based on fluid-solid coupling heat transfer[J]. Mechanery Design and Manufacture, 2020, 352(6): 117-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ202006030.htm
|
[26] |
NEJAT A, ASLANI M, MIRZAKHALILI E, et al. Heat transfer enhancement in ventilated brake disk using double airfoil vanes[J]. Journal of Thermal Science and Engineering Applications, 2011, 3(4): 045001. doi: 10.1115/1.4004931
|
[27] |
SISSON A E. Thermal analysis of vented brake rotors[J]. SAE Transactions, 1978, 87(2): 1685-1694.
|
[28] |
QIAN Cheng. Aerodynamic shape optimization using CFD parametric model with brake cooling application[C]//SAE. SAE 2002 World Congress and Exhibition. Washingtion DC: SAE, 2002: 1-9.
|
[29] |
CHI Zhong-zhe, HE Yu-ping, NATERER G. Convective heat transfer optimization of automotive brake discs[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2009, 2(1): 961-969. doi: 10.4271/2009-01-0859
|
[30] |
PRABHAKAR S, PRAKASH S, SARAVANA KUMAR M, et al. Performance analysis of ventilated brake disc for its effective cooling[J]. Journal of Chemical and Pharmaceutical Sciences, 2015, 7(7): 358-361.
|
[31] |
MUNISAMY K M, SHUAIB N H, YUSOFF M Z, et al. Heat transfer enhancement on ventilated brake disk with blade inclination angle variation[J]. International Journal of Automotive Technology, 2013, 14(4): 569-577. doi: 10.1007/s12239-013-0061-8
|
[32] |
胡立中, 康宁. 通道式制动盘通道结构形式对散热性能的影响[C]//北京汽车工程学会. 2013年学术论文集. 北京: 北京汽车工程学会, 2013: 207-218.
HU Li-zhong, KANG Ning. Influence of channel structure of channel brake disc on heat dissipation performance[C]//Beijing Society of Automotive Engineering. 2013 Academic Proceedings. Beijing: Beijing Society of Automotive Engineering, 2013: 207-218. (in Chinese)
|
[33] |
吴佳伟, 杨志刚. 气流方向对通风制动盘散热性能的影响[J]. 汽车工程学报, 2014, 4(6): 418-423. doi: 10.3969/j.issn.2095-1469.2014.06.05
WU Jia-wei, YANG Zhi-gang. Influence of airflow direction oncooling performance of vented brake discs[J]. Chinese Journal of Automotive Engineering Society, 2014, 4(6): 418-423. (in Chinese) doi: 10.3969/j.issn.2095-1469.2014.06.05
|
[34] |
TIROVIC M, TOPOURIS S, SHERWOOD G. Experimental investigation of the cooling characteristics of a monobloc cast iron brake disc with fingered hub[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234(1): 85-97. doi: 10.1177/0954407019838642
|
[35] |
JEONG B, KIM H, KIM W, et al. Optimization of cooling air duct and dust cover shape for brake disc best cooling performance[C]//SAE. SAE 32nd Annual Brake Colloquium and Exhibition. Washington DC: SAE, 2014: 1-9.
|
[36] |
YAN Hong-bin, WU Wei-tao, FENG Shang-sheng, et al. Role of vane configuration on the heat dissipation performance of ventilated brake discs[J]. Applied Thermal Engineering, 2018, 136(1): 118-130.
|
[37] |
LIMPERT R. The thermal performance of automotive disc brakes[J]. SAE Technical Paper, 1975, 84(1): 2355-2368.
|
[38] |
BARIGOZZI G, COSSALI G E, PERDICHIZZI A, et al. Experimental investigation of the mean and turbulent flow characteristics at the exit of automotive vented brake discs[C]// SAE. SAE 20th Annual Brake Colloquium and Exhibition. Washington DC: SAE, 2002: 379-383.
|
[39] |
TOPOURIS S, STAMENKOVI AC'G D, OLPHE-GALLIARD M, et al. Heat dissipation from stationary passenger car brake discs[J]. Strojniški Vestnik-Journal of Mechanical Engineering, 2020, 66(1): 15-28.
|
[40] |
VOLLER G P. Analysis of heat dissipation from railway and automotive friction brakes[D]. London: Brunel University, 2003.
|
[41] |
YAN Hong-bin, FENG Shang-sheng, LU Tian-jian, et al. Experimental and numerical study of turbulent flow and enhanced heat transfer by cross-drilled holes in a pin-finned brake disc[J]. International Journal of Thermal Sciences, 2017, 118: 355-366. doi: 10.1016/j.ijthermalsci.2017.04.024
|
[42] |
YAN Hong-bin, FENG Shang-sheng, WU Wei-tao, et al. Experimental study of convective heat transfer in standard and cross-drilled brake discs with radial vane and X-lattice cores[C]// ASEM. ASME 2018 International Mechanical Engineering Congress and Exposition. New York: ASME, 2018: 9-15.
|
[43] |
YAN Hong-bin, FENG Shang-sheng, YANG Xiao-hu, et al. Role of cross-drilled holes in enhanced cooling of ventilated brake discs[J]. Applied Thermal Engineering, 2015, 91(5): 318-333.
|
[44] |
ANTANAITIS D, RIFICI A. The effect of rotor crossdrilling on brake performance[J]. SAE Transactions, 2006, 115(6): 571-596.
|
[45] |
白涛, 杨晓彤, 李文涛. 绊线形状对压气机流动控制影响分析[J]. 重庆理工大学学报(自然科学版), 2019, 33(6): 59-64. doi: 10.3969/j.issn.1674-8425(z).2019.06.009
BAI Tao, YANG Xiao-tong, LI Wen-tao. Analysis of the influence of trip-line shape on compressor flow control[J]. Journal of Chongqing University of Technology (Natural Science Edition), 2019, 33(6): 59-64. (in Chinese) doi: 10.3969/j.issn.1674-8425(z).2019.06.009
|
[46] |
唐新宜, 朱冬生, 戴险峰, 等. 导流装置对凸肋通道传热与流动的影响[J]. 高校化学工程学报, 2015, 29(5): 1089-1097. doi: 10.3969/j.issn.1003-9015.2015.05.010
TANG Xin-yi, ZHU Dong-sheng, DAI Xian-feng, et al. Influence ofdeflector on heat transfer and fluid in ribbed channel[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(5): 1089-1097. (in Chinese) doi: 10.3969/j.issn.1003-9015.2015.05.010
|
[47] |
GALINDO-LOPEZ C H, TIROVIC M. Understanding and improving the convective cooling of brake discs with radial vanes[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222(7): 1211-1229. doi: 10.1243/09544070JAUTO594
|
[48] |
PALMER E, MISHRA R, FIELDHOUSE J. A computational fluid dynamic analysis on the effect of front row pin geometry on the aerothermodynamic properties of a pin-vented brake disc[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222(7): 1231-1245. doi: 10.1243/09544070JAUTO755
|
[49] |
PALMER E, MISHRA R, FIELDHOUSE J. An optimization study of a multiple-row pin-vented brake disc to promote brake cooling using computational fluid dynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2009, 223(7): 865-875. doi: 10.1243/09544070JAUTO1053
|
[50] |
YAN H B, ZHANG Q C, LU T J. An X-type lattice cored ventilated brake disc with enhanced cooling performance[J]. International Journal of Heat and Mass Transfer, 2015, 80: 458-468. doi: 10.1016/j.ijheatmasstransfer.2014.09.060
|
[51] |
王一帆. 管内纵向旋流对流传热强化研究[D]. 武汉: 华中科技大学, 2019.
WANG Yi-fan. Study onconvective enhancement of longitudinal swirl flow in tube[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese)
|
[52] |
YAN H B, ZHANG Q C, LU T J. Heat transfer enhancement by X-type lattice in ventilated brake disc[J]. International Journal of Thermal Sciences, 2016, 107(3): 39-55.
|
[53] |
YAN H B, ZHANG Q C, CHEN W J, et al. An X-lattice cored rectangular honeycomb with enhanced convective heat transfer performance[J]. Applied Thermal Engineering, 2020, 166: 114687. doi: 10.1016/j.applthermaleng.2019.114687
|
[54] |
TIROVIC M, GALINDO-LOPEZ C H. Convective heat dissipation from a wheel-hub-mounted railway brake disc[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2008, 222(4): 355-365. doi: 10.1243/09544097JRRT135
|
[55] |
刘正先, 赵衡, 曹淑珍, 等. 不同工况对离心叶轮内部流场特性影响的试验研究[J]. 流体机械, 2004, 32(10): 1-4. doi: 10.3969/j.issn.1005-0329.2004.10.001
LIU Zheng-xian, ZHAO Heng, CAO Shu-zhen, et al. Experimental investigation of the character of flow field in centrifugal impeller at different flow rate[J]. Fluid Machinery, 2004, 32(10): 1-4. (in Chinese) doi: 10.3969/j.issn.1005-0329.2004.10.001
|
[56] |
王杰枫, 栾宇轩, 杜长河, 等. 一种新型组合内部冷却的流动和换热特性研究[J]. 西安交通大学学报, 2018, 52(5): 108-115. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201805016.htm
WANG Jie-feng, LUAN Yu-xuan, DU Chang-he, et al. Investigation on the flow and heat transfer behavior of a new composite internal cooling model[J]. Journal of Xi'an Jiaotong University, 2018, 52(5): 108-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201805016.htm
|
[57] |
祝华. SAB WABCO公司开发出新型制动盘[J]. 国外铁道车辆, 2005(3): 42. https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD20050300F.htm
ZHU Hua. SAB WABCO Company has developed a new brake disc[J]. Foreign Railway Rolling Stock, 2005(3): 42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWTD20050300F.htm
|
[58] |
左建勇, 罗卓军. 高速列车制动盘泵风效应分析[J]. 交通运输工程学报, 2014, 14(2): 34-40, 74. doi: 10.3969/j.issn.1671-1637.2014.02.007
ZUO Jian-yong, LUO Zhuo-jun. Air-pumping effect analysis for brake disc of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2014, 14(2): 34-40, 74. (in Chinese) doi: 10.3969/j.issn.1671-1637.2014.02.007
|
[59] |
GERLICI J, GORBUNOV M, KRAVCHENKO K, et al. The innovative design of rolling stock brake elements[J]. Communications-Scientific Letters of the University of Zilina, 2017, 19(2): 23-28. doi: 10.26552/com.C.2017.2.23-26
|
[60] |
TIROVI AC'G M. Energy thrift and improved performance achieved through novel railway brake discs[J]. Applied Energy, 2009, 86(3): 317-324. doi: 10.1016/j.apenergy.2008.04.017
|
[61] |
BARIGOZZI G, COSSALI G E, PERDICHIZZI A, et al. Experimental investigation of the aero-thermal characteristics at the exit of an automotive vented brake disc[C]//SAE. 21st Annual Brake Colloquium and Exhibition. Washington DC: SAE, 2003: 1-13.
|
[62] |
JANCIRANI J, CHANDRASEKARAN S, TAMILPORAI P. Design and heat transfer analysis of automotive disc brakes[C]// ASME. 2003 ASME Summer Heat Transfer Conference. New York: ASME, 2003: 827-834.
|
[63] |
MORGAN S, DENNIS R W. A theoretical prediction of disc brake temperatures and a comparison with experimental data[C]// SAE. 1972 Automotive Engineering Congress and Exposition. Washington DC: SAE, 1972: 1-8.
|
[64] |
金星, 张永恒, 王良璧, 等. 高速列车制动盘表面对流传热特性[J]. 科学通报, 2015, 60(23): 2245-2252. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201523011.htm
JIN Xing, ZHANG Yong-heng, WANG Liang-bi, et al. The convective heat transfer characteristics of the brake disc surface of a high speed train[J]. Chinese Science Bulletin, 2015, 60(23): 2245-2252. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201523011.htm
|
[65] |
ZHANG Yong-heng, JIN Xing, HE Mei, et al. The convective heat transfer characteristics on outside surface of vehicle brake disc[J]. International Journal of Thermal Sciences, 2017, 120: 366-376. doi: 10.1016/j.ijthermalsci.2017.06.020
|
[66] |
LIMPERT R. Cooling analysis of disc brake rotors[C]// SAE. 1975 SAE Truck Meeting. Washington DC: SAE, 1975: 1-6.
|
[67] |
VDOVIN A, GUSTAFSSON M, SEBBEN S. A coupled approach for vehicle brake cooling performance simulations[J]. International Journal of Thermal Sciences, 2018, 132(5): 257-266.
|
[68] |
WAGNER C. Heat transfer from a rotating disk to ambient air[J]. Journal of Applied Physics, 1948, 19(9): 837-839. doi: 10.1063/1.1698216
|
[69] |
BARIGOZZI G, PERDICHIZZI A, PACCHIANA P, et al. Aero-thermal characteristics of an automotive CCM vented brake disc[J]. SAE Transactions, 2005, 114(4): 3053-3062.
|
[70] |
潘利科, 韩建民, 李志强, 等. 列车制动盘通风散热的数值仿真[J]. 北京交通大学学报, 2015, 39(1): 118-124. doi: 10.3969/j.issn.1672-8106.2015.01.015
PAN Li-ke, HAN Jian-min, LI Zhi-qiang, et al. Numerical simulationfor train brake disc ventilation[J]. Journal of Beijing Jiaotong University, 2015, 39(1): 118-124. (in Chinese) doi: 10.3969/j.issn.1672-8106.2015.01.015
|
[71] |
金星, 魏秀琴. 高速列车制动盘表面对流换热系数的研究进展[J]. 企业技术开发, 2014, 33(28): 37-39. https://www.cnki.com.cn/Article/CJFDTOTAL-QYJK201428017.htm
JIN Xing, WEI Xiu-qin. The research progress of convective heat transfer coefficient on the surface of the high-speed train brake disc[J]. Technological Development of Enterprise, 2014, 33(28): 37-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QYJK201428017.htm
|
[72] |
RAJA T, MATHISELVAN G, SREENIVASULUREDDY M, et al. Design and analysis of Air flow duct for improving the thermal performance of disc brake rotor[J]. IOP Conference Series: Materials Science and Engineering, 2017, 197(1): 012086.
|
[73] |
马重芳, 马庆芳. 传热的强化技术[J]. 力学情报, 1978(1): 18-40. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ197801002.htm
MA Chong-fang, MA Qing-fang. Heat transfer enhancement technology[J]. Mechanical Information, 1978(1): 18-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ197801002.htm
|
[74] |
PARK S B, LEE K S, LEE D H. An investigation of local heat transfer characteristics in a ventilated disc brake with helically fluted surfaces[J]. Journal of Mechanical Science and Technology, 2007, 21(12): 2178-2187. doi: 10.1007/BF03177478
|
[75] |
YAN Hong-bin, YANG Xiao-hu, LU Tian-jian, et al. Convective heat transfer in a lightweight multifunctional sandwich panel with X-type metallic lattice core[J]. Applied Thermal Engineering, 2017, 127(4): 1293-1304.
|
[76] |
MEW T D, KANG K J, KIENHÖFER F W, et al. Transient thermal response of a highly porous ventilated brake disc[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2015, 229(6): 674-683. doi: 10.1177/0954407014567516
|
[77] |
刘静娟, 刘莹, 康光林, 等. 高速列车通风式制动盘的散热特性分析[J]. 机械科学与技术, 2018, 37(6): 937-940. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201806021.htm
LIU Jing-juan, LIU Ying, KANG Guang-lin, et al. Analysis of heat dissipation performance for ventilated brake disc in high speed train[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(6): 937-940. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201806021.htm
|
[78] |
OCAMPO J, JELIC S, HAN J. Simulation-driven process to evaluate vehicle integration aspects in brake thermal design[C]// SAE. The 13th SAE Brasil International Brake Colloquium and Engineering Display. Washington DC: SAE, 2017: https://doi.org/10.4271/2017-36-0011.
|
[79] |
NEWCOMB T P. Temperatures reached in disc brakes[J]. Journal of Mechanical Engineering Science, 1960, 2(3): 167-177. doi: 10.1243/JMES_JOUR_1960_002_026_02
|
[80] |
SAKAMOTO H. Heat convection and design of brake discs[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2004, 218(3): 203-212. doi: 10.1243/0954409042389436
|
[81] |
NOYES R N, VICKERS P T. Prediction of surface temperatures in passenger car disc brakes[J]. SAE Transactions, 1969, 78(3): 1653-1658.
|
[82] |
KRVSEMANN R, SCHMIDT G. Analysis and optimization of disk brake cooling via computational fluid dynamics[J]. SAE Transactions, 1995, 104(2): 1475-1481.
|
[83] |
BELHOCINE A, OMAR W Z W. CFD analysis of the brake disc and the wheel house through air flow: predictions of Surface heat transfer coefficients (STHC) during braking operation[J]. Journal of Mechanical Science and Technology, 2018, 32(1): 481-490. doi: 10.1007/s12206-017-1249-z
|
[84] |
REDDY S M, MALLIKARJUNA J M, GANESAN V. Flow and heat transfer analysis through a brake disc: a CFD approach[C]//ASME. 2006 ASME International Mechanical Engineering Congress and Exposition. New York: ASME, 2006: 481-485.
|
[85] |
MUKUTMONI D, JELIC S, HAN J, et al. Role of Accurate numerical simulation of brake cooldown in brake design process[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2012, 5(4): 1199-1210. doi: 10.4271/2012-01-1811
|
[86] |
BARIGOZZI G, PERDICHIZZI A, DONATI M. Combined experimental and CFD investigation of brake discs aero-thermal performances[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2008, 1(1): 1194-1201. doi: 10.4271/2008-01-2550
|
[87] |
JIN Xin, SHEN Bei-bei, YAN Hong-bin, et al. Comparative evaluations of thermofluidic characteristics of sandwich panels with X-lattice and Pyramidal-lattice cores[J]. International Journal of Heat and Mass Transfer, 2018, 127: 268-282. doi: 10.1016/j.ijheatmasstransfer.2018.07.087
|
[88] |
王全伟, 任远, 王尧, 等. 制动器动态制动性能试验系统温度测量方法的研究[J]. 起重运输机械, 2011(5): 50-54. doi: 10.3969/j.issn.1001-0785.2011.05.015
WANG Quan-wei, REN Yuan, WANG Yao, et al. Research on temperature measurement of dynamic braking performance test systemof brake[J]. Hoisting and Conveying Machinery, 2011(5): 50-54. (in Chinese) doi: 10.3969/j.issn.1001-0785.2011.05.015
|
[89] |
李阳杰, 符蓉, 高飞, 等. 列车制动盘试验测试与数值模拟的温度偏差分析[J]. 润滑与密封, 2019, 44(2): 51-58, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF201902011.htm
LI Yang-jie, FU Rong, GAO Fei, et al. Temperature deviation analysis of train brake disc experiment and numerical simulation[J]. Lubrication Engineering, 2019, 44(2): 51-58, 71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF201902011.htm
|
[90] |
KALIN M. Influence of flash temperatures on the tribological behaviour in low-speed sliding: a review[J]. Materials Science and Engineering: A, 2004, 374(1/2): 390-397.
|
[91] |
ATKINS M D, KIENHÖFER F W, LU Tian-jian, et al. Local Heat transfer distributions within a rotating pin-finned brake disk[J]. Journal of Heat Transfer, 2020, 142(11): 112101. doi: 10.1115/1.4047836
|
[92] |
白万栋, 梁栋, 陈伟, 等. 肋片扰流对柱肋通道传热和压损影响[J]. 航空动力学报, 2019, 34(11): 2509-2515. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201911023.htm
BAI Wan-dong, LIANG Dong, CHEN Wei, et al. Rib influence on heat transfer and pressure drop in pin-fin array[J]. Journal of Aerospace Power, 2019, 34(11): 2509-2515. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201911023.htm
|
[93] |
POSER R, VON WOLFERSDORF J, LUTUM E. Advanced evaluation of transient heat transfer experiments using thermochromic liquid crystals[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2007, 221(6): 793-801. doi: 10.1243/09576509JPE464
|
[94] |
陈伟, 杨力, 任静, 等. 瞬态液晶技术在涡轮叶片内部冷却研究中的应用[J]. 工程热物理学报, 2012, 33(4): 665-669. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201204031.htm
CHEN Wei, YANG Li, REN Jing, et al. Application of transient liquid crystalon internal cooling research of gas turbine airfoil[J]. Journal of Engineering Thermophysics, 2012, 33(4): 665-669. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201204031.htm
|
[95] |
丁福焰, 余欲为, 李和平. 高速基础制动试验台测试技术[J]. 铁道机车车辆, 2011, 31(5): 145-147. doi: 10.3969/j.issn.1008-7842.2011.05.037
DING Fu-yan, YU Yu-wei, LI He-ping. Testing techniques in high speed foundation brake dynamometer[J]. Railway Locomotive and Car, 2011, 31(5): 145-147. (in Chinese) doi: 10.3969/j.issn.1008-7842.2011.05.037
|
[96] |
郭伟, 董丽虹, 徐滨士, 等. 主动红外热像无损检测技术的研究现状与进展[J]. 无损检测, 2016, 38(4): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201604016.htm
GUO Wei, DONG Li-hong, XU Bin-shi, et al. Research status and progress of active infrared thermographic nondestructive testing technology[J]. Nondestructive Testing Technologying, 2016, 38(4): 58-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201604016.htm
|
[97] |
李云红, 孙晓刚, 原桂彬. 红外热像仪精确测温技术[J]. 光学精密工程, 2007, 15(9): 1336-1341. doi: 10.3321/j.issn:1004-924x.2007.09.005
LI Yun-hong, SUN Xiao-gang, YUAN Gui-bin. Accurate measuring temperature with infrared thermal imager[J]. Optics and Precision Engineering, 2007, 15(9): 1336-1341. (in Chinese) doi: 10.3321/j.issn:1004-924x.2007.09.005
|
[98] |
EKKAD S V, OU S C, RIVIR R B. A transient infrared thermography method for simultaneous film cooling effectiveness and heat transfer coefficient measurements from a single test[J]. Journal of Turbomachinery, 2004, 126(4): 597-603. doi: 10.1115/1.1791283
|
[99] |
SIROUX M, HARMAND S, DESMET B. Experimental study using infrared thermography on the convective heat transfer of a TGV brake disc in the actual environment[J]. Optical Engineering, 2002, 41(7): 1558-1564. doi: 10.1117/1.1481896
|
[100] |
LYONS O F P, MURRAY D B, TORRANCE A A. Air jet cooling of brake discs[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008, 222(6): 995-1004. doi: 10.1243/09544062JMES927
|
[101] |
何有世, 袁寿其, 黄良勇. 流体机械叶轮内部流场测试技术进展[J]. 流体机械, 2004(12): 36-40. doi: 10.3969/j.issn.1005-0329.2004.12.010
HE You-shi, YUAN Shou-qi, HUANG Liang-yong. Development on measurement technology in internal flow field of fluid machinery[J]. Fluid Machinery, 2004, 32(12): 36-40. (in Chinese) doi: 10.3969/j.issn.1005-0329.2004.12.010
|
[102] |
ADRIAN R J. Particle-imaging techniques for experimental fluid mechanics[J]. Annual Review of Fluid Mechanics, 1991, 23(1): 261-304. doi: 10.1146/annurev.fl.23.010191.001401
|
[103] |
KUBOTA M, HAMABE T, NAKAZONO Y, et al. Development of a lightweight brake disc rotor: a design approach for achieving an optimum thermal, vibration and weight balance[J]. JSAE Review, 2000, 21(3): 349-355. doi: 10.1016/S0389-4304(00)00050-3
|
[104] |
SOONG C Y. Flow structure and heat transfer between two disks rotating independently[J]. Journal of Thermal Science, 2003, 12(1): 62-76. doi: 10.1007/s11630-003-0011-2
|
[105] |
JIMÉNEZ GARCÍA C A, GUTIÉRREZ PAREDES G J, RIVERA LÓPEZ J E, et al. Flow measurement at the inlet and outlet zones of an automotive brake disc with ventilation post pillars, using particle image velocimetry technique[J]. Recent Advances in Fluid Dynamics with Environmental Applications, 2016, 6(10): 323-332.
|
[106] |
WATKINS S, STEPHENS A, DIXON C. The aerodynamics of vented disc brakes[C]//EAEC. 10th EAEC European Automotive Congress. Australia: EAEC, 2005, 259-274.
|
[107] |
李茂华, 龚杰. 三维PIV应用于船舶精细流场测试研究进展[J]. 中国舰船研究, 2015, 10(1): 58-67. doi: 10.3969/j.issn.1673-3185.2015.01.009
LI Mao-hua, GONG Jie. Development of 3D-PIV applied on fine flow field testing of ships[J]. Chinese Journal of Ship Research, 2015, 10(1): 58-67. (in Chinese) doi: 10.3969/j.issn.1673-3185.2015.01.009
|
[108] |
RIVERA LÓPEZ J E, GUTIÉRREZ PAREDES G J, QUINTERO OROZCO A, et al. Flow field experimental study in brake discs with aerodynamic ventilation columns[J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2020, 13(1): 6-13.
|
[109] |
刘友, 杨晓涛, 马修真. 基于激光多普勒测速的流场测试技术[J]. 激光与红外, 2012, 42(1): 18-21. doi: 10.3969/j.issn.1001-5078.2012.01.004
LIU You, YANG Xiao-tao, MA Xiu-zhen. Technique of flow field measurement technology based on laser Doppler velocimetry[J]. Laser and Infrared, 2012, 42(1): 18-21. (in Chinese) doi: 10.3969/j.issn.1001-5078.2012.01.004
|
[110] |
JERHAMRE A, BERGSTRÖM C. Numerical study of brake disc cooling accounting for both aerodynamic drag force and cooling efficiency[J]. SAE Transactions, 2001, 110(1): 1156-1163.
|
[111] |
李鹏. 微风速下热线风速仪校准方法的研究[D]. 保定: 河北大学, 2017.
LI Peng. Experiment investigation on calibration method of hot wire anemometer on low air speed[D]. Baoding: Hebei University, 2017. (in Chinese)
|
[112] |
DEAN R C, SENOO Y. Rotating wakes in vaneless diffusers[J]. Journal of Fluids Engineering, 1960, 82(3): 563.
|
[113] |
SHEPLAK M. Design, validation, and testing of a hot-film anemometer for hypersonic flow[D]. Syracuse: Syracuse University, 1995.
|
[114] |
韦青燕, 张天宏. 高超声速热线/热膜风速仪研究综述及分析[J]. 测试技术学报, 2012, 26(2): 142-149. doi: 10.3969/j.issn.1671-7449.2012.02.010
WEI Qing-yan, ZHANG Tian-hong. Review and analysis of hot-wire/film anemometry for hypersonic airflow measurement[J]. Journal of Test and Measurement Technology, 2012, 26(2): 142-149. (in Chinese) doi: 10.3969/j.issn.1671-7449.2012.02.010
|
[115] |
刘海涌, 刘存良, 武文明. 射流冲击对内冷通道侧壁面换热特性影响研究[J]. 推进技术, 2016, 37(7): 1295-1302. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201607013.htm
LIU Hai-yong, LIU Cun-liang, WU Wen-ming. Investigation on effects of impingement jets on heat transfer characteristics of internal cooling passage side wall[J]. Journal of Propulsion Technology, 2016, 37(7): 1295-1302. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201607013.htm
|
[116] |
DE MEDEIROS GOMES L F, DE LIMA MENEZES F, DE SILVA CARVALHO A, et al. Study of temperature reduction in automobile brake discs by forced convection[C]// SAE. The 13th SAE Brasil International Brake Colloquium and Engineering Display. Washington DC: SAE, 2017: https://doi.org/10.4271/2017-36-0020.
|