Citation: | DONG Ping, YIN Chen-yang, ZHANG Yu-yang, ZHANG Hong-ke. Review on development of heterogeneous smart cooperative vehicular networks in rail transit[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 41-58. doi: 10.19818/j.cnki.1671-1637.2022.02.003 |
[1] |
艾渤, 马国玉, 钟章队. 智能高铁中的5G技术及应用[J]. 中兴通讯技术, 2019, 25(6): 42-47, 54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXTX201906008.htm
AI Bo, MA Guo-yu, ZHONG Zhang-dui. 5G technologies and applications in high-speed railway[J]. ZTE Technology Journal, 2019, 25(6): 42-47, 54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXTX201906008.htm
|
[2] |
AI B, MOLISCH A F, RUPP M, et al. 5G key technologies for smart railways[J]. Proceedings of the IEEE, 2020, 108(6): 856-893. doi: 10.1109/JPROC.2020.2988595
|
[3] |
AI B, GUAN K, RUPP M, et al. Future railway services-oriented mobile communications network[J]. IEEE Communications Magazine, 2015, 53(10): 78-85. doi: 10.1109/MCOM.2015.7295467
|
[4] |
IBRAHIM E A, BADRAN E F, RIZK M R M. An optimized LTE measurement handover procedure for high speed trains using WINNER Ⅱ channel model[C]//IEEE. 22nd Asia-Pacific Conference on Communications. New York: IEEE, 2016: 197-203.
|
[5] |
FOKUM D T, FROST V S. A survey on methods for broadband Internet access on trains[J]. IEEE Communications Surveys and Tutorials, 2010, 12(2): 171-185. doi: 10.1109/SURV.2010.021110.00060
|
[6] |
GHANNOUM H, SANZ D. Internet onboard: technical analysis[C]//Springer. 5th International Workshop on Communication Technologies for Vehicles. Berlin: Springer, 2013: 22-30.
|
[7] |
BANERJEE S, HEMPEL M, SHARIF H. A survey of wireless communication technologies and their performance for high speed railways[J]. Journal of Transportation Technologies, 2016, 6(1): 15-29. doi: 10.4236/jtts.2016.61003
|
[8] |
SCALISE S, MURA R, MIGNONE V. Air interfaces for satellite based digital TV broadcasting in the railway environment[J]. IEEE Transactions on Broadcasting, 2006, 52(2): 158-166. doi: 10.1109/TBC.2006.872991
|
[9] |
HO D H, VALAEE S. Information raining and optimal link-layer design for mobile hotspots[J]. IEEE Transactions on Mobile Computing, 2005, 4(3): 271-284. doi: 10.1109/TMC.2005.42
|
[10] |
TES T. Study of high-speed wireless data transmissions for railroad operation[R]. Washington DC: Federal Railroad Administration, 2007.
|
[11] |
ZHOU T, SHARIF H, HEMPEL M, et al. A quantitative study of mobility impact for real-time services on a Wi-Fi multi-hop network[C]//IEEE. 2008 IEEE 67th Vehicular Technology Conference. New York: IEEE, 2008: 2577-2581.
|
[12] |
YAMADA K, SAKAI Y, SUZUKI T, et al. A communication system with a fast handover under a high speed mobile environment[C]//IEEE. 2010 IEEE 72nd Vehicular Technology Conference. New York: IEEE, 2010: 1-5.
|
[13] |
ZHAO Ya-wei, WU Yu, FENG Ya-xiong, et al. Dynamic channel selections and performance analysis for high-speed train WiFi network[C]//IEEE. 2015 International Workshop on High Mobility Wireless Communications. New York: IEEE, 2015: 31-35.
|
[14] |
SEN A, SIVALINGAM K M, NARAYANAN B K J. Persistent WiFi connectivity during train journey: an SDN based approach[C]//IEEE. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management. New York: IEEE, 2019: 634-638.
|
[15] |
OUARZAZI B, BERBINEAU M, DAYOUB I, et al. Channel estimation of OFDM system for high data rate communications on mobile environments[C]//IEEE. 2009 9th International Conference on Intelligent Transport Systems Telecommunications, New York: IEEE, 2009: 425-429.
|
[16] |
YEH C H, CHOW C W, LIU Y L, et al. Theory and technology for standard WiMAX over fiber in high speed train systems[J]. Journal of Lightwave Technology, 2010, 28(16): 2327-2336. doi: 10.1109/JLT.2010.2044018
|
[17] |
DUDOYER S, DENIAU V, ADRIANO R, et al. Study of the susceptibility of the GSM-R communications face to the electromagnetic interferences of the rail environment[J]. IEEE Transactions on Electromagnetic Compatibility, 2012, 54(3): 667-676. doi: 10.1109/TEMC.2011.2169677
|
[18] |
DUDOYER S, DENIAU V, AMBELLOUIS S, et al. Classification of transient EM noises depending on their effect on the quality of GSM-R reception[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(5): 867-874. doi: 10.1109/TEMC.2013.2239998
|
[19] |
HASSAN K, GAUTIER R, DAYOUB I, et al. Multiple-antenna-based blind spectrum sensing in the presence of impulsive noise[J]. IEEE Transactions on Vehicular Technology, 2014, 63(5): 2248-2257. doi: 10.1109/TVT.2013.2290839
|
[20] |
HE Rui-si, ZHONG Zhang-dui, AI Bo, et al. Shadow fading correlation in high-speed railway environments[J]. IEEE Transactions on Vehicular Technology, 2015, 64(7): 2762-2772.
|
[21] |
HE Rui-si, ZHONG Zhang-dui, AI Bo, et al. Measurement- based auto-correlation model of shadow fading for the high-speed railways in urban, suburban, and rural environments[C]// IEEE. 2014 IEEE Antennas and Propagation Society, AP-S International Symposium. New York: IEEE, 2014: 949-950.
|
[22] |
SUN Teng-yu, ZHOU Ke-hui, LUO Xiang-hua, et al. Research on the fast handover algorithms of GSM-R for high-speed railway[C]//IEEE. Proceedings-2015 International Conference on Network and Information Systems for Computers. New York: IEEE, 2015: 213-218.
|
[23] |
SONG Ya-li, WEN Ying-hong, ZHANG Dan, et al. Fast prediction model of coupling coefficient between pantograph arcing and GSM-R antenna[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11612-11618. doi: 10.1109/TVT.2020.3015057
|
[24] |
CALLE-SÁNCHEZ J, MOLINA-GARCÍA M, ALONSO J I, et al. Long term evolution in high speed railway environments: Feasibility and challenges[J]. Bell Labs Technical Journal, 2013, 18(2): 237-253. doi: 10.1002/bltj.21615
|
[25] |
ZHOU Yi-qing. Radio environment map based maximum a posteriori Doppler shift estimation for LTE-R[C]//IEEE. 2014 International Workshop on High Mobility Wireless Communications. New York: IEEE, 2014: 7000241.
|
[26] |
SNIADY A, SOLER J. LTE for railways: impact on performance of ETCS railway signaling[J]. IEEE Vehicular Technology Magazine, 2014, 9(2): 69-77. doi: 10.1109/MVT.2014.2310572
|
[27] |
CALLE-SÁNCHEZ J, MARTINEZ-DE-RIOJA E, MOLINA-GARCIA M, et al. Performance of LTE mobile relay node usage for uplink access in high speed railway scenarios[C]//IEEE. 2015 IEEE Vehicular Technology Conference. New York: IEEE, 2015: 7146012.
|
[28] |
IBRAHIM E A, BADRAN E F, RIZK M R M. A power-distance based handover triggering algorithm for LTE-R using WINNERⅡ-D2a channel model[C]//IEEE. 22nd Asia-Pacific Conference on Communications. New York: IEEE, 2016: 167-173.
|
[29] |
AHMAD I, CHEN W, CHANG K. LTE-railway user priority-based cooperative resource allocation schemes for coexisting public safety and railway networks[J]. IEEE Access, 2017, 5: 7985-8000. doi: 10.1109/ACCESS.2017.2698098
|
[30] |
GUPTA N, SINGH B. A novel seamless handover scheme for high-speed railway transport using dual-antenna system[C]// IEEE. 2019 4th IEEE International Conference on Recent Trends on Electronics, Information, Communication and Technology. New York: IEEE, 2019: 1160-1165.
|
[31] |
HE Rui-si, AI Bo, WANG Gong-pu, et al. High-speed railway communications: from GSM-R to LTE-R[J]. IEEE Vehicular Technology Magazine, 2016, 11(3): 49-58. doi: 10.1109/MVT.2016.2564446
|
[32] |
HE Rui-si, ZHONG Zhang-dui, AI Bo, et al. Reducing the cost of high-speed railway communications: from the propagation channel view[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4): 2050-2060. doi: 10.1109/TITS.2015.2390614
|
[33] |
KIM Y, LEE H Y, HWANG P, et al. Feasibility of mobile cellular communications at millimeter wave frequency[J]. IEEE Journal of Selected Topics in Signal Processing, 2016, 10(3): 589-599. doi: 10.1109/JSTSP.2016.2520901
|
[34] |
HE Dang-ping, AI Bo, GUAN Ke, et al. Channel measurement, simulation, and analysis for high-speed railway communications in 5G millimeter-wave band[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(10): 3144-3158. doi: 10.1109/TITS.2017.2771559
|
[35] |
ZHOU Tao, LI Hua-yu, WANG Yang, et al. Channel modeling for future high-speed railway communication systems: a survey[J]. IEEE Access, 2019, 7: 52818-52826. doi: 10.1109/ACCESS.2019.2912408
|
[36] |
SHENG Jie, TANG Zi-wen, WU Cheng, et al. Game theory-based multi-objective optimization interference alignment algorithm for HSR 5G heterogeneous ultra-dense network[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13371-13382. doi: 10.1109/TVT.2020.3025778
|
[37] |
FENG Bo-hao, ZHANG Hong-ke, ZHOU Hua-chun, et al. Locator/identifier split networking: a promising future internet architecture[J]. IEEE Communications Surveys and Tutorials, 2017, 19(4): 2927-2948. doi: 10.1109/COMST.2017.2728478
|
[38] |
ZHANG Hong-ke, QUAN Wei, CHAO Han-chieh, et al. Smart identifier network: a collaborative architecture for the future internet[J]. IEEE Network, 2016, 30(3): 46-51. doi: 10.1109/MNET.2016.7474343
|
[39] |
HAN M, HAN K S, LEE D J. Fast IP handover performance improvements using performance enhancing proxys between satellite networks and wireless LAN networks for high-speed trains[C]//IEEE. 2008 IEEE Vehicular Technology Conference. New York: IEEE, 2008: 2341-2344.
|
[40] |
TERADA M, TERAOKA F. Providing a high-speed train with a broadband and fault tolerant IPv4/6 NEMO environment[C]//IEEE. 2012 IEEE Globecom Workshops. New York: IEEE, 2012: 1052-1056.
|
[41] |
LIU Yi-wei, NERI A, RUGGERI A, et al. A MPTCP-based network architecture for intelligent train control and traffic management operations[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(9): 2290-2302. doi: 10.1109/TITS.2016.2633531
|
[42] |
HU Yun, CHANG Zheng, LI Hong-yan, et al. Service provisioning and user association for heterogeneous wireless railway networks[J]. IEEE Transactions on Communications, 2017, 65(7): 3066-3078. doi: 10.1109/TCOMM.2017.2687930
|
[43] |
HU Yun, LI Hong-yan, CHANG Zheng, et al. Scheduling strategy for multimedia heterogeneous high-speed train networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(4): 3265-3279. doi: 10.1109/TVT.2016.2587080
|
[44] |
MAZZENGA F, GIULIANO R, NERI A, et al. Integrated public mobile radio networks/satellite for future railway communications[J]. IEEE Wireless Communications, 2017, 24(2): 90-97. doi: 10.1109/MWC.2016.1500266WC
|
[45] |
YAN Xiao-yun, DONG Ping, DU Xiao-jiang, et al. Congestion game with link failures for network selection in high-speed vehicular networks[J]. IEEE Access, 2018, 6: 76165-76175. doi: 10.1109/ACCESS.2018.2884766
|
[46] |
WU Yong-dong, YE Deng-pan, WEI Zhuo, et al. Situation-aware authenticated video broadcasting over train-trackside WiFi networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 1617-1627. doi: 10.1109/JIOT.2018.2859185
|
[47] |
CHEN Ya-li, AI Bo, NIU Yong, et al. Resource allocation for device-to-device communications in multi-cell multi-band heterogeneous cellular networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4760-4773. doi: 10.1109/TVT.2019.2903858
|
[48] |
ZHANG Xiao-ya, DONG Ping, DU Xiao-jiang, et al. Space-ground integrated information network enabled Internet of vehicles: architecture and key mechanisms[J]. IEEE Communications Standards Magazine, 2020, 4(4): 11-17. doi: 10.1109/MCOMSTD.001.2000015
|
[49] |
WANG Xin-mu, LI He-wu, YAO Wen-bing, et al. Content delivery for high-speed railway via integrated terrestrial-satellite networks[C]//IEEE. 2020 IEEE Wireless Communications and Networking Conference. New York: IEEE, 2020: 9120643.
|
[50] |
LIU Bin, NI Wei, LIU Ren-ping, et al. Optimal selection of heterogeneous network interfaces for high-speed rail communications[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15005-15018. doi: 10.1109/TVT.2020.3031923
|
[51] |
YAN Li, FANG Xu-ming, HAO Li, et al. Safety-oriented resource allocation for space-ground integrated cloud networks of high-speed railways[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(12): 2747-2759. doi: 10.1109/JSAC.2020.3005487
|
[52] |
XUN Ding, XIN Chen, JIANG Wen-yi. The analysis of GSM-R redundant network and reliability models on high-speed railway[C]//IEEE. 2010 International Conference on Electronics and Information Engineering. New York: IEEE, 2010: V2154-V2158.
|
[53] |
LUO Qing-lin, FANG Wei, WU Jin-song, et al. Reliable broadband wireless communication for high speed trains using baseband cloud[J]. EURASIP Journal on Wireless Communications and Networking, 2012, 2012: 1-12. doi: 10.1186/1687-1499-2012-1
|
[54] |
DONG Ping, ZHENG Tao, DU Xiao-jiang, et al. SVCC-HSR: providing secure vehicular cloud computing for intelligent high-speed rail[J]. IEEE Network, 2018, 32(3): 64-71. doi: 10.1109/MNET.2018.1700330
|
[55] |
YASEEN F A, AL-RAWESHIDY H S. Proactive forwarding of high data rate in smart virtualization networks for high-speed trains[J]. IEEE Systems Journal, 2019, 14(2): 1670-1681.
|
[56] |
张宏科, 罗洪斌. 智慧协同网络体系基础研究[J]. 电子学报, 2013, 41(7): 1249-1252, 1254. doi: 10.3969/j.issn.0372-2112.2013.07.001
ZHANG Hong-ke, LUO Hong-bin. Fundamental research on theories of smart and cooperative networks[J]. Acta Electronica Sinica, 2013, 41(7): 1249-1252, 1254. (in Chinese) doi: 10.3969/j.issn.0372-2112.2013.07.001
|
[57] |
ZHANG Yu-yang, DONG Ping, DU Xiao-jiang, et al. BNNC: improving performance of multipath transmission in heterogeneous vehicular networks[J]. IEEE Access, 2019, 7: 158113-158125. doi: 10.1109/ACCESS.2019.2948954
|
[58] |
LOPEZ I, AGUADO M, PINEDO C, et al. SCADA systems in the railway domain: enhancing reliability through redundant multipath TCP[C]//IEEE. 2015 IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2015: 2305-2310.
|
[59] |
XU Chang-qiao, LI Zhuo-feng, ZHONG Lu-jie, et al. CMT-NC: improving the concurrent multipath transfer performance using network coding in wireless networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(3): 1735-1751. doi: 10.1109/TVT.2015.2409556
|
[60] |
XU Chang-qiao, WANG Peng, XIONG Chun-shan, et al. Pipeline network coding-based multipath data transfer in heterogeneous wireless networks[J]. IEEE Transactions on Broadcasting, 2017, 63(2): 376-390. doi: 10.1109/TBC.2016.2590819
|
[61] |
MA Bin, WANG Dong, CHENG Shuang-guo, et al. Modeling and analysis for vertical handoff based on the decision tree in a heterogeneous vehicle network[J]. IEEE Access, 2017, 5: 8812-8824. doi: 10.1109/ACCESS.2017.2707801
|
[62] |
YANG Yu-wen, GAO Fei-fei, ZHONG Zhi-meng, et al. Deep transfer learning-based downlink channel prediction for FDD massive MIMO systems[J]. IEEE Transactions on Communications, 2020, 68(12): 7485-7497. doi: 10.1109/TCOMM.2020.3019077
|
[63] |
WANG Cheng, WU Qing-ting, TANG Zi-wen, et al. Spectrum management in high-speed railway cooperative cognitive radio network based on multi-agent reinforcement learning[C]//IEEE. 16th IEEE International Wireless Communications and Mobile Computing Conference. New York: IEEE, 2020: 702-707.
|
[64] |
王增浩, 杨丽花, 程露, 等. 5G高速移动系统中基于BP神经网络的多普勒频偏估计方法[J]. 电信科学, 2020, 36(4): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX202004011.htm
WANG Zeng-hao, YANG Li-hua, CHENG Lu, et al. BP neural network based Doppler frequency offset estimation method for 5G high-speed mobile system[J]. Telecommunications Science, 2020, 36(4): 83-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXKX202004011.htm
|
[65] |
NIKA A, ZHU Yi-bo, DING Ning, et al. Energy and performance of smartphone radio bundling in outdoor environments[C]//ACM. Proceedings of the 24th International Conference on World Wide Web. New York: ACM, 2015: 809-819.
|
[66] |
SCHARF M, KIESEL S. NXG03-5: head-of-line blocking in TCP and SCTP: analysis and measurements[C]//IEEE. 2006 Global Telecommunications Conference. New York: IEEE, 2006: 1-5.
|
[67] |
PAASCH C, FERLIN S, ALAY O, et al. Experimental evaluation of multipath TCP schedulers[C]//ACM. ACM SIGCOMM 2014 Capacity Sharing Workshop. New York: ACM, 2014: 27-32.
|
[68] |
PAASCH C, DETAL G, DUCHENE F, et al. Exploring mobile/WiFi handover with multipath TCP[C]//ACM. 2012 ACM SIGCOMM Workshop on Cellular Networks: Operations, Challenges, and Future Design. New York: ACM, 2012: 31-36.
|
[69] |
FERLIN S, ALAY Ö, MEHANI O, et al. BLEST: Blocking estimation-based MPTCP scheduler for heterogeneous networks[C]//IEEE. 2016 IFIP Networking Conference (IFIP Networking) and Workshops. New York: IEEE, 2016: 431-439.
|
[70] |
GARCIA-SAAVEDRA A, KARZAND M, LEITH D J. Low delay random linear coding and scheduling over multiple interfaces[J]. IEEE Transactions on Mobile Computing, 2017, 16(11): 3100-3114. doi: 10.1109/TMC.2017.2686379
|
[71] |
ZHANG Yu-yang, DONG Ping, DU Xiao-jiang, et al. Dynamic time-threshold based receive buffer for vehicle-to-cloud multipath transmission[C]//IEEE. 2020 International Conference on Computing, Networking and Communications. New York: IEEE, 2020: 428-433.
|
[72] |
HAN Jiang-ping, XUE Kai-ping, XING Yi-tao, et al. Leveraging coupled BBR and adaptive packet scheduling to boost MPTCP[J]. IEEE Transactions on Wireless Communications, 2021, 20(11): 7555-7567. doi: 10.1109/TWC.2021.3085661
|
[73] |
OH B H, LEE J. Feedback-based path failure detection and buffer blocking protection for MPTCP[J]. IEEE/ACM Transactions on Networking, 2016, 24(6): 3450-3461. doi: 10.1109/TNET.2016.2527759
|
[74] |
王同军. 中国智能高铁发展战略研究[J]. 中国铁路, 2019(1): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201901002.htm
WANG Tong-jun. Study on the development strategy of China intelligent high speed railway[J]. China Railway, 2019(1): 9-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201901002.htm
|
[75] |
ZHANG Han, LI Wen-zhong, GAO Shao-hua, et al. ReLeS: A neural adaptive multipath scheduler based on deep reinforcement learning[C]//IEEE. 2019 IEEE Conference on Computer Communications. New York: IEEE, 2019: 1648-1656.
|
[76] |
LI Wen-zhong, ZHANG Han, GAO Shao-hua, et al. SmartCC: a reinforcement learning approach for multipath TCP congestion control in heterogeneous networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(11): 2621-2633. doi: 10.1109/JSAC.2019.2933761
|
[77] |
YIN Chen-yang, DONG Ping, DU Xiao-jiang, et al. An adaptive network coding scheme for multipath transmission in cellular-based vehicular networks[J]. Sensors, 2020, 20(20): 5902. doi: 10.3390/s20205902
|
[78] |
LU Zhao-jun, QU Gang, LIU Zeng-lin. A survey on recent advances in vehicular network security, trust, and privacy[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(2): 760-776. doi: 10.1109/TITS.2018.2818888
|
[79] |
MEHRABI M, YOU D H, LATZKO V, et al. Device-enhanced MEC: multi-access edge computing (MEC) aided by end device computation and caching: a survey[J]. IEEE Access, 2019, 7: 166079-166108. doi: 10.1109/ACCESS.2019.2953172
|