Volume 22 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
ZHU Sheng-yang, ZHANG Qing-lai, YUAN Zhan-dong, ZHAI Wan-ming. Damage detection for floating-slab track steel-spring based on residual convolutional network[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 123-135. doi: 10.19818/j.cnki.1671-1637.2022.02.009
Citation: ZHU Sheng-yang, ZHANG Qing-lai, YUAN Zhan-dong, ZHAI Wan-ming. Damage detection for floating-slab track steel-spring based on residual convolutional network[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 123-135. doi: 10.19818/j.cnki.1671-1637.2022.02.009

Damage detection for floating-slab track steel-spring based on residual convolutional network

doi: 10.19818/j.cnki.1671-1637.2022.02.009
Funds:

National Natural Science Foundation of China 51978587

National Natural Science Foundation of China 11790283

Independent Project of State Key Laboratory of Traction Power 2019TPL-T16

More Information
  • Author Bio:

    ZHU Sheng-yang(1986-), male, associate professor, PhD, syzhu@swjtu.edu.cn

  • Received Date: 2021-10-21
  • Publish Date: 2022-04-25
  • As traditional fault diagnosis methods can hardly effectively detect the steel-spring damage of floating-slab track (FST), a damage detection method based on the one-dimensional residual convolutional network was proposed. A vehicle-FST coupled dynamics model was built, and the data sets for the floating-slab vibration response caused by the passing vehicles under various conditions were generated. The residual convolutional network was utilized for the feature extraction and data classification of the vibration response under different damage scenarios to achieve the accurate positioning of damaged steel springs. The detection performance of the residual convolutional network on different sensor deployment schemes were studied. The influence of the complex positional relationship between the damaged steel springs and the sensors on the detection performance was analyzed, and the economic and reliable sensor deployment schemes were optimized and determined. Analysis results reveal that when the sensors are closer to the middle of the floating-slab, better classification accuracy and robustness of the residual convolutional network can be achieved on the data under different damage scenarios. As the number of sensors increases, the detection performance of the method also improves, but the excessive concentration of the sensors in the middle of the floating-slab will not bring about significant improvement on the performance. The damage of steel-springs in the middle of the floating-slab is more difficult to identify than that at the end of the floating-slab. The damage detection method achieves a classification accuracy of 99.11% on the full-coverage deployment scheme, boasting good adaptability to complex and changeable detection scenarios. The classification accuracies of the optimized two-sensor deployment scheme and three-sensor deployment scheme reach 98.23% and 98.96%, respectively. The optimized sensor deployment schemes have good detection performance and keep the adaptability of the damage detection method to complex scenarios. 4 tabs, 16 figs, 30 refs.

     

  • loading
  • [1]
    李莉, 尹铁锋, 朱茜, 等. 城轨高架环境噪声特性与不同频段能量[J]. 交通运输工程学报, 2018, 18(2): 120-128. doi: 10.3969/j.issn.1671-1637.2018.02.013

    LI Li, YIN Tie-feng, ZHU Qian, et al. Characteristics and energies in different frequency bands of environmental noise in urban elevated rail[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 120-128. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.02.013
    [2]
    ZHU Sheng-yang, WANG Jian-wei, CAI Cheng-biao, et al. Development of a vibration attenuation track at low frequencies for urban rail transit[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32: 713-726. doi: 10.1111/mice.12285
    [3]
    刘卫丰, 刘维宁, 袁扬, 等. 地铁列车与道路车辆运行对环境的振动影响现场测试与分析[J]. 铁道学报, 2013, 35(5): 80-84. doi: 10.3969/j.issn.1001-8360.2013.05.013

    LIU Wei-feng, LIU Wei-ning, YUAN Yang, et al. In-situ measurements of and analysis on environmental effects of vibrations induced by passage of metro trains and vehicles on the road[J]. Journal of the China Railway Society, 2013, 35(5): 80-84. (in Chinese) doi: 10.3969/j.issn.1001-8360.2013.05.013
    [4]
    王建伟, 蔡成标, 朱胜阳. 浮置板轨道钢弹簧隔振器动态特性参数的频率与幅值依赖性试验研究[J]. 中国科学: 技术科学, 2016, 46(8): 808-814. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201608003.htm

    WANG Jian-wei, CAI Cheng-biao, ZHU Sheng-yang. Experimental study on frequency and amplitude dependent behavior of dynamic parameters of steel-spring vibration isolator used in floating slab track[J]. Scientia Sinica: Technologica, 2016, 46(8): 808-814. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201608003.htm
    [5]
    吴天行. 轨道减振器与弹性支承块或浮置板轨道组合的隔振性能分析[J]. 振动工程学报, 2007, 20(5): 489-493. doi: 10.3969/j.issn.1004-4523.2007.05.011

    WU Tian-xing. On effectiveness of vibration isolation for super-elastic rail support combined with booted sleeper or floating slab track[J]. Journal of Vibration Engineering, 2007, 20(5): 489-493. (in Chinese) doi: 10.3969/j.issn.1004-4523.2007.05.011
    [6]
    徐庆元, 范浩, 孟亚军, 等. 地铁隧道橡胶浮置板轨道纵向连接理论研究[J]. 交通运输工程学报, 2013, 13(4): 37-44. doi: 10.3969/j.issn.1671-1637.2013.04.006

    XU Qing-yuan, FAN Hao, MENG Ya-jun, et al. Theoretical study of longitudinal connection for rubber floating slab track of subway tunnel[J]. Journal of Traffic and Transportation Engineering, 2013, 13(4): 37-44. (in Chinese) doi: 10.3969/j.issn.1671-1637.2013.04.006
    [7]
    程珊, 刘林芽, 王少锋. 高架钢弹簧浮置板轨道减振特性研究及参数优化[J]. 噪声与振动控制, 2018, 38(5): 146-150. doi: 10.3969/j.issn.1006-1355.2018.05.026

    CHENG Shan, LIU Lin-ya, WANG Shao-feng. Vibration reduction study and parameter optimization of steel spring floating slab tracks in metro viaducts[J]. Noise and Vibration Control, 2018, 38(5): 146-150. (in Chinese) doi: 10.3969/j.issn.1006-1355.2018.05.026
    [8]
    LEI Xiao-yan, JIANG Chong-da. Analysis of vibration reduction effect of steel spring floating slab track with finite elements[J]. Journal of Vibration and Control, 2016, 22(6): 1462-1471. doi: 10.1177/1077546314539372
    [9]
    ZHAO Cai-you, LIU Dong-ya, ZHANG Xiao-ming, et al. Influence of vibration isolator failure on vehicle operation performance and floating slab track structure vibration reduction effectiveness[J]. Shock and Vibration, 2019, 2019: 1-15.
    [10]
    雷亚国, 杨彬, 杜兆钧, 等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019, 55(7): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201907001.htm

    LEI Ya-guo, YANG Bin, DU Zhao-jun, et al. Deep transfer diagnosis method for machinery in big data era[J]. Journal of Mechanical Engineering, 2019, 55(7): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201907001.htm
    [11]
    MAURYA S, SINGH V, VERMA N K. Condition monitoring of machines using fused features from EMD-based local energy with DNN[J]. IEEE Sensors Journal, 2020, 20(15): 8316-8327. doi: 10.1109/JSEN.2019.2927754
    [12]
    QIN Yi. A new family of model-based impulsive wavelets and their sparse representation for rolling bearing fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2017, 65(3): 2716-2726.
    [13]
    GUO Yong-xing, LIU Wen-long, LI Xiong, et al. Fiber bragg grating displacement sensor with high abrasion resistance for a steel spring floating slab damping track[J]. Sensors, 2018, DOI: 10.3390/s18061899.
    [14]
    魏新江, 史文超, 蒋吉清, 等. 钢弹簧损伤对地铁列车-浮置板轨道振动性能的影响[J]. 振动与冲击, 2019, 38(11): 228-234. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201911034.htm

    WEI Xin-jiang, SHI Wen-chao, JIANG Ji-qing, et al. Effects of steel spring damage on vibration performance of metro train-floating slab track system[J]. Journal of Vibration and Shock, 2019, 38(11): 228-234. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201911034.htm
    [15]
    LEI Ya-guo, JIA Feng, LIN Jing, et al. An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3137-3147. doi: 10.1109/TIE.2016.2519325
    [16]
    ABDELJABER O, AVCI O, KIRANYAZ S, et al. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks[J]. Journal of Sound and Vibration, 2017, 388: 154-170. doi: 10.1016/j.jsv.2016.10.043
    [17]
    张西宁, 郭清林, 刘书语. 深度学习技术及其故障诊断应用分析与展望[J]. 西安交通大学学报, 2020, 54(12): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202012002.htm

    ZHANG Xi-ning, GUO Qing-lin, LIU Shu-yu. Analysis and prospect of deep learning technology andits fault diagnosis application[J]. Journal of Xi'an Jiaotong University, 2020, 54(12): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202012002.htm
    [18]
    SHU Jiang-peng, ZHANG Zi-ye, GONZALEZ I, et al. The application of a damage detection method using artificial neural network and train-induced vibrations on a simplified railway bridge model[J]. Engineering Structures, 2013, 52: 408-421. doi: 10.1016/j.engstruct.2013.02.031
    [19]
    赵蓉, 史红梅. 基于高阶谱特征提取的高速列车车轮擦伤识别算法研究[J]. 机械工程学报, 2017, 53(6): 102-109. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201706016.htm

    ZHAO Rong, SHI Hong-mei. Research on wheel-flat recognition algorithm for high-speed train based on high-order spectrum feature extraction[J]. Journal of Mechanical Engineering, 2017, 53(6): 102-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201706016.htm
    [20]
    WEI Xiu-kun, YANG Zi-ming, LIU Yu-xin, et al. Railway track fastener defect detection based on image processing and deep learning techniques: a comparative study[J]. Engineering Applications of Artificial Intelligence, 2019, 80: 66-81. doi: 10.1016/j.engappai.2019.01.008
    [21]
    沈长青, 王旭, 王冬, 等. 基于多尺度卷积类内迁移学习的列车轴承故障诊断[J]. 交通运输工程学报, 2020, 20(5): 151-164. doi: 10.19818/j.cnki.1671-1637.2020.05.012

    SHEN Chang-qing, WANG Xu, WANG Dong, et al. Multi-scale convolution intra-class transfer learning for train bearing fault diagnosis[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 151-164. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.012
    [22]
    王其昂, 王腾, 倪一清. 基于卷积神经网络的高铁车轮损伤识别方法研究[J]. 中国矿业大学学报, 2020, 49(4): 781-787. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202004016.htm

    WANG Qi-ang, WANG Teng, NI Yi-qing. Damage detection of wheels for high-speed rail based on convolutional neural network[J]. Journal of China University of Mining and Technology, 2020, 49(4): 781-787. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202004016.htm
    [23]
    SRIVASTAVA R K, GREFF K, SCHMIDHUBER J. Training very deep networks[J]. Advances in Neural Information Processing Systems, 2015, 28: 2377-2385.
    [24]
    HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Deep residual learning for image recognition[C]//IEEE. Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778.
    [25]
    ZHAI Wan-ming, WANG Kai-yun, CAI Cheng-biao. Fundamentals of vehicle-track coupled dynamics[J]. Vehicle System Dynamics, 2009, 47(11): 1349-1376. doi: 10.1080/00423110802621561
    [26]
    ZHAI Wan-ming. Two simple fast integration methods for large-scale dynamic problems in engineering[J]. International Journal for Numerical Methods in Engineering, 1996, 39(24): 4199-4214. doi: 10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y
    [27]
    ZHU Sheng-yang, YANG Ji-zhong, YAN Hua, et al. Low-frequency vibration control of floating slab tracks using dynamic vibration absorbers[J]. Vehicle System Dynamics, 2015, 53(9): 1296-1314. doi: 10.1080/00423114.2015.1046460
    [28]
    IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//ACM. Proceedings of the 2015 International Conference on Machine Learning. New York: ACM, 2015: 448-456.
    [29]
    HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Identity mappings in deep residual networks[C]//Springer. Lecture Notes in Computer Science. Amsterdam: Springer, 2016: 630-645.
    [30]
    LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[C]//AAAI. Proceeding of the 2019 International Conference on Learning Representations. Palo Alto: AAAI, 2019: 1-19.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (665) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return