Citation: | CHEN Zhao-wei, ZHAI Wan-ming. Control threshold of pier settlement in high-speed railways based on train vibrations[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 136-147. doi: 10.19818/j.cnki.1671-1637.2022.02.010 |
[1] |
CHEN Zhao-wei, ZHAI Wan-ming, CAI Cheng-biao, et al. Safety threshold of high-speed railway pier settlement based on train-track-bridge dynamic interaction[J]. Science China Technological Sciences, 2015, 58(2): 202-210. doi: 10.1007/s11431-014-5692-0
|
[2] |
翟婉明, 赵春发, 夏禾, 等. 高速铁路基础结构动态性能演变及服役安全的基础科学问题[J]. 中国科学: 技术科学, 2014, 44(7): 645-660. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407002.htm
ZHAI Wan-ming, ZHAO Chun-fa, XIA He, et al. Basic scientific issues on dynamic performance evolution of the high-speed railway infrastructure and its service safety[J]. Scientia Sinica (Technologica), 2014, 44(7): 645-660. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407002.htm
|
[3] |
石瑞喜. 桥墩差异沉降规律及其对轨道高低平顺性的影响[J]. 四川建筑, 2013, 33(1): 94-95, 99. doi: 10.3969/j.issn.1007-8983.2013.01.035
SHI Rui-xi. Law of differential settlement of piers and its influence on track uneven irregularity[J]. Sichuan Architecture, 2013, 33(1): 94-95, 99. (in Chinese) doi: 10.3969/j.issn.1007-8983.2013.01.035
|
[4] |
张文胜, 崔志伟. 铁路客运专线特大桥沉降预测模型[J]. 交通运输工程学报, 2011, 11(6): 31-36. doi: 10.1097/RLU.0b013e3181f49ac7
ZHANG Wen-sheng, CUI Zhi-wei. Settlement prediction model of super large bridge for passenger dedicated railway[J]. Journal of Traffic and Transportation Engineering, 2011, 11(6): 31-36. (in Chinese) doi: 10.1097/RLU.0b013e3181f49ac7
|
[5] |
龚循强, 刘国祥, 周秀芳. 高速铁路桥墩沉降监测数据粗差探测方法研究[J]. 铁道建筑, 2013(10): 34-36. doi: 10.3969/j.issn.1003-1995.2013.10.11
GONG Xun-qiang, LIU Guo-xiang, ZHOU Xiu-fang. Research on gross error detection method of pier settlement monitoring data of high-speed railway high-speed railways[J]. Railway Engineering, 2013(10): 34-36. (in Chinese) doi: 10.3969/j.issn.1003-1995.2013.10.11
|
[6] |
王少杰, 徐赵东, 李舒, 等. 基于钢轨应变监测的多跨铁路简支梁桥桥墩差异沉降识别[J]. 铁道学报, 2016, 38(3): 106-110. doi: 10.3969/j.issn.1001-8360.2016.03.015
WANG Shao-jie, XU Zhao-dong, LI Shu, et al. Identification of differential settlement of piers for multi-span railway simply supported girder bridges based on track strain monitoring[J]. Journal of the China Railway Society, 2016, 38(3): 106-110. (in Chinese) doi: 10.3969/j.issn.1001-8360.2016.03.015
|
[7] |
章荣军, 郑俊杰, 丁烈云, 等. 成孔切槽引起邻近桩基沉降规律及控制措施[J]. 华中科技大学学报(自然科学版), 2011, 39(4): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201104036.htm
ZHANG Rong-jun, ZHENG Jun-jie, DING Lie-yun, et al. Additional settlement induced by hole-boring and grooves on an adjacent pile foundation and its control[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2011, 39(4): 114-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201104036.htm
|
[8] |
宋国华, 高芒芒, 黎国清. 桥梁墩台不均匀沉降时的车桥垂向系统耦合振动分析[J]. 中国铁道科学, 2010, 31(2): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201002009.htm
SONG Guo-hua, GAO Mang-mang, LI Guo-qing. Vehicle-bridge vertical system coupled vibration analysis under the uneven settlement of bridge pier and abutment[J]. China Railway Science, 2010, 31(2): 29-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201002009.htm
|
[9] |
JIANG Li-zhong, ZHENG Lan, FENG Yu-lin, et al. Mapping the relationship between the structural deformation of a simply supported beam bridge and rail deformation in high-speed railways[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 234(1): 1081-1092.
|
[10] |
LAI Zhi-peng, JIANG Li-zhong, LIU Xiang, et al. Analytical investigation on the geometry of longitudinal continuous track in high-speed rail corresponding to lateral bridge deformation[J]. Construction and Building Materials, 2021, 268: 121064. doi: 10.1016/j.conbuildmat.2020.121064
|
[11] |
陈兆玮, 孙宇, 翟婉明. 高速铁路桥墩沉降与钢轨变形的映射关系(Ⅰ): 单元板式无砟轨道系统[J]. 中国科学: 技术科学, 2014, 44(7): 770-777. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407015.htm
CHEN Zhao-wei, SUN Yu, ZHAI Wan-ming. Mapping relationship between pier settlement and rail deformation of high-speed railways—Part (Ⅰ): the unit slab track system[J]. Scientia Sinica (Technologica), 2014, 44(7): 770-777. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201407015.htm
|
[12] |
CHEN Zhao-wei, FANG Hui. Influence of pier settlement on contact behavior between CRTSⅡ track and bridge in high-speed railways[J]. Engineering Structures, 2021, 235: 112007. doi: 10.1016/j.engstruct.2021.112007
|
[13] |
CHEN Zhao-wei. Dynamic contact between CRTS Ⅱ slab track and bridge due to time-dependent effect of bridge and its influence on train-track-bridge interaction[J]. Engineering Structures, 2021, 234: 111974. doi: 10.1016/j.engstruct.2021.111974
|
[14] |
CHEN Zhao-wei, ZHAI Wan-ming, TIAN Guo-ying. Study on the safe value of multi-pier settlement for simply supported girder bridges in high-speed railways[J]. Structure and Infrastructure Engineering, 2018, 14(3): 400-410. doi: 10.1080/15732479.2017.1359189
|
[15] |
CHEN Zhao-wei, FANG Hui, KE Xin-meng, et al. A new method to identify bridge bearing damage based on radial basis function neural network[J]. Earthquakes and Structures, 2016, 11(5): 841-859. doi: 10.12989/eas.2016.11.5.841
|
[16] |
ZENG Zhi-ping, LIU Fu-shan, WANG Wei-dong. Three- dimensional train-track-bridge coupled dynamics model based on the explicit finite element method[J]. Soil Dynamics and Earthquake Engineering, 2022, 153: 107066. doi: 10.1016/j.soildyn.2021.107066
|
[17] |
YAU J D. Response of a train moving on multi-span railway bridges undergoing ground settlement[J]. Engineering Structures, 2009, 31(9): 2115-2122. doi: 10.1016/j.engstruct.2009.03.019
|
[18] |
ZHOU Wang-bao, NIE Lei-xin, JIANG Li-zhong, et al. Mapping relation between pier settlement and rail deformation of unit slab track system[J]. Structures, 2020, 27: 1066-1074. doi: 10.1016/j.istruc.2020.07.023
|
[19] |
ZHU Li, WANG Jia-ji, LI Xuan, et al. Experimental and numerical study on creep and shrinkage effects of ultra high- performance concrete beam[J]. Composites Part B: Engineering, 2020, 184: 107713. doi: 10.1016/j.compositesb.2019.107713
|
[20] |
GAYARRE F L, GONZÁLEZ J S, PÉREZ C L C, et al. Shrinkage and creep in structural concrete with recycled brick aggregates[J]. Construction and Building Materials, 2019, 228: 116750. doi: 10.1016/j.conbuildmat.2019.116750
|
[21] |
ZHOU Yi, XIA Yong, CHEN Bo, et al. Analytical solution to temperature-induced deformation of suspension bridges[J]. Mechanical Systems and Signal Processing, 2020, 139: 106568. doi: 10.1016/j.ymssp.2019.106568
|
[22] |
ZHAI Wan-ming, HAN Zhao-ling, CHEN Zhao-wei, et al. Train-track-bridge dynamic interaction: a state-of-the-art review[J]. Vehicle System Dynamics, 2019, 57(7): 984-1027. doi: 10.1080/00423114.2019.1605085
|
[23] |
翟婉明, 蔡成标, 王开云. 高速列车-轨道-桥梁动态相互作用原理及模型[J]. 土木工程学报, 2005, 38(11): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200511024.htm
ZHAI Wan-ming, CAI Cheng-biao, WANG Kai-yun. Mechanism and model of high-speed train-track-bridge dynamic interaction[J]. China Civil Engineering Journal, 2005, 38(11): 132-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200511024.htm
|
[24] |
CHEN Zhao-wei, FANG Hui. An alternative solution of train-track dynamic interaction[J]. Shock and Vibration, 2019, 2019: 1859261.
|
[25] |
XU Lei, ZHAI Wan-ming. A new model for temporal-spatial stochastic analysis of vehicle-track coupled systems[J]. Vehicle System Dynamics, 2017, 55(3): 427-448. doi: 10.1080/00423114.2016.1270456
|
[26] |
ZHU Sheng-yang, WANG Jian-wei, CAI Cheng-biao, et al. Development of a vibration attenuation track at low frequencies for urban rail transit[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(9): 713-726. doi: 10.1111/mice.12285
|
[27] |
CHEN Zhao-wei, ZHAI Wan-ming, YIN Qiang. Analysis of structural stresses of tracks and vehicle dynamic responses in train-track-bridge system with pier settlement[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(2): 421-434. doi: 10.1177/0954409716675001
|
[28] |
CHEN Zhao-wei. Evaluation of longitudinal connected track under combined action of running train and long-term bridge deformation[J]. Journal of Vibration and Control, 2020, 26(7/8): 599-609.
|
[29] |
JIANG Hong-guang, LI Yi-xin, WANG Yu-jie, et al. Dynamic performance evaluation of ballastless track in high-speed railways under subgrade differential settlement[J]. Transportation Geotechnics, 2022, 33: 100721. doi: 10.1016/j.trgeo.2022.100721
|
[30] |
MONTENEGRO P A, CARVALHO H, RIBEIRO D, et al. Assessment of train running safety on bridges: a literature review[J]. Engineering Structures, 2021, 241: 112425. doi: 10.1016/j.engstruct.2021.112425
|