Volume 22 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
YIN Guan-sheng, GAO Jian-guo, SHI Ming-hui, JIN Ming-zhu, TUO Hong-liang, LI Chang, ZHANG Bo. Tunnel crack recognition method under image block[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 148-159. doi: 10.19818/j.cnki.1671-1637.2022.02.011
Citation: YIN Guan-sheng, GAO Jian-guo, SHI Ming-hui, JIN Ming-zhu, TUO Hong-liang, LI Chang, ZHANG Bo. Tunnel crack recognition method under image block[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 148-159. doi: 10.19818/j.cnki.1671-1637.2022.02.011

Tunnel crack recognition method under image block

doi: 10.19818/j.cnki.1671-1637.2022.02.011
Funds:

National Natural Science Foundation of China 11702033

Science and Technology Project of Department of Transport of Shaanxi Province 13-16K

Scientific Innovation Practice Project of Postgraduates of Chang'an University 300103714017

More Information
  • Author Bio:

    YIN Guan-sheng(1958-), male, professor, PhD, yings@chd.edu.cn

  • Received Date: 2021-10-28
  • Publish Date: 2022-04-25
  • Considering the strong visual interference such as the non-uniform lighting, water seepage, and noise in tunnel lining surfaces, a crack inspection method based on image blocks was designed for tunnel lining. A rapid and automatic non-contact intelligent inspection system for the tunnel structure appearance was developed according to the geographical characteristics in West China and the appearance diseases of tunnel lining. With the tunnel image data set under the non-uniform lighting as the research object, an image recognition algorithm for the characteristic extraction of tunnel cracks was proposed on the basis of image blocks. The noise generated by the electronic components was studied, and the hazard characteristics of tunnel lining were analyzed and summarized. The image matrix was divided into an appropriate number of area blocks in view of crack characteristics and resolution, and the original image was divided into the target-background area, target-disease area, disease-background area, and other areas according to the grayscale characteristics of these area blocks. Then, the rough image of tunnel cracks was obtained by the maximum inter-class variance method and the local threshold segmentation. On this basis, the crack characteristics of the rough image were extracted. Each area block of the original image was subjected to a contrast limited adaptive histogram equalization and a local threshold segmentation for a detailed image. The overlapping area of the detailed image and the rough image was set as the ideal image of crack binarization. On the basis of the inspection system for the tunnel structure appearance, binarization tests were carried out on the crack images in different directions, and the location information and directions of cracks in tunnel lining images were obtained by the positioning of tunnel cracks and the projection method. Research results reveal that the accuracy, recall, and F value of tunnel cracks under the proposed algorithm can reach 90.34%, 98.78%, and 94.37%, respectively. The proposed algorithm can not only ensure the integrity of tunnel cracks, but also retain the details of target cracks to the maximum extent under the non-uniform lighting. Thus, it can be used to deal with the binarization problem of general grayscale images. 1 tab, 13 figs, 37 refs.

     

  • loading
  • [1]
    李庆桐, 黄宏伟. 基于数字图像的盾构隧道衬砌裂缝病害诊断[J]. 岩石力学与工程学报, 2020, 39(8): 1658-1670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008014.htm

    LI Qing-tong, HUANG Hong-wei. Diagnosis of structural cracks of shield tunnel lining based on digital images[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1658-1670. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202008014.htm
    [2]
    李了了, 邓善熙, 丁兴号. 基于大津法的图像分块二值化算法[J]. 微计算机信息, 2005, 21(14): 76-77. https://www.cnki.com.cn/Article/CJFDTOTAL-WJSJ200514027.htm

    LI Liao-liao, DENG Shan-xi, DING Xing-hao, Binarization algorithm based on image partition derived from Da-Jing method[J]. Microcomputer Information, 2005, 21(14): 76-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WJSJ200514027.htm
    [3]
    韩美林, 武立, 程峻杰, 等. 路面裂缝检测识别系统设计[J]. 舰船电子工程, 2020, 40(8): 151-154. doi: 10.3969/j.issn.1672-9730.2020.08.037

    HAN Mei-lin, WU Li, CHENG Jun-jie, et al. Design of detection and identification system for pavement crack[J]. Ship Electronic Engineering, 2020, 40(8): 151-154. (in Chinese) doi: 10.3969/j.issn.1672-9730.2020.08.037
    [4]
    ZHOU Jing-ling, WANG Feng, XU Jian-rong, et al. A novel character segmentation method for serial number on banknotes with complex background[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10: 2955-2969. doi: 10.1007/s12652-018-0707-5
    [5]
    OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. doi: 10.1109/TSMC.1979.4310076
    [6]
    张善文, 黄文准, 师韵. 基于改进Bernsen二值化算法的植物病害叶片病斑检测[J]. 广东农业科学, 2016, 43(12): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-GDNY201612022.htm

    ZHANG Shan-wen, HUANG Wen-zhun, SHI Yun. Improved Bernsen binary algorithm for spot detection of plant disease leaves[J]. Guangdong Agricultural Sciences, 2016, 43(12): 129-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDNY201612022.htm
    [7]
    曹逸凡, 许宝杰, 徐小力, 等. 基于改进Bernsen算法的图像二值化研究[J]. 设备管理与维修, 2017(18): 26-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SBGX201718015.htm

    CAO Yi-fan, XU Bao-jie, XU Xiao-li, et al. Research on image binarization based on improved Bernsen algorithm[J]. Plant Maintenance Engineering, 2017(18): 26-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SBGX201718015.htm
    [8]
    张洁玉. 基于图像分块的局部阈值二值化方法[J]. 计算机应用, 2017, 37(3): 827-831. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201703039.htm

    ZHANG Jie-yu. Binarization method with local threshold based on image blocks[J]. Journal of Computer Applications, 2017, 37(3): 827-831. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201703039.htm
    [9]
    ZHANG Xin-xiang, RAJAN D, STORY B. Concrete crack detection using context-aware deep semantic segmentation network[J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34(11): 951-957. doi: 10.1111/mice.12477
    [10]
    ZHOU Xiang, PODOLEANU A G, YANG Zhuang-qun, et al. Morphological operation-based bi-dimensional empirical mode decomposition for automatic background removal of fringe patterns[J]. Optics Express, 2012, 20(22): 24247-24262. doi: 10.1364/OE.20.024247
    [11]
    STANIEK M. Detection of cracks in asphalt pavement during road inspection processes[J]. Scientific Journal of Silesian University of Technology. Series Transport, 2017, 96: 175-184. doi: 10.20858/sjsutst.2017.96.16
    [12]
    NNOLIM U A. Fully adaptive segmentation of cracks on concrete surfaces[J]. Computers and Electrical Engineering, 2020, 83: 106561. doi: 10.1016/j.compeleceng.2020.106561
    [13]
    伯绍波, 闫茂德, 孙国军, 等. 沥青路面裂缝检测图像处理算法研究[J]. 微计算机信息, 2007, 23(15): 280-282. doi: 10.3969/j.issn.1008-0570.2007.15.112

    BO Shao-bo, YAN Mao-de, SUN Guo-jun, et al. Research on crack detection image processing algorithm for asphalt pavement surface[J]. Microcomputer Information, 2007, 23(15): 280-282. (in Chinese) doi: 10.3969/j.issn.1008-0570.2007.15.112
    [14]
    WANG K C P, GONG Wei-guo. Real-time automated survey system of pavement cracking in parallel environment[J]. Journal of Infrastructure Systems, 2005, 11(3): 154-164. doi: 10.1061/(ASCE)1076-0342(2005)11:3(154)
    [15]
    CHENG H D, MIYOJIM M. Automatic pavement distress detection system[J]. Information Sciences, 1998, 108(1/2/3/4): 219-240.
    [16]
    XU B, HUANG Y. Automatic inspection of pavement cracking distress[J]. Applications of Digital Image Processing, 2005, 5909: doi.org/10.1117/12.613770.
    [17]
    啜二勇. 国内路面自动检测系统研究历程及展望[J]. 中国高新技术企业, 2009(19): 195-196. doi: 10.3969/j.issn.1009-2374.2009.19.103

    CHUO Er-yong. Research progress and prospect of domestic pavement automatic testing system[J]. Chinese Hi-Tech Enterprises, 2009(19): 195-196. (in Chinese) doi: 10.3969/j.issn.1009-2374.2009.19.103
    [18]
    王建锋. 激光路面三维检测专用车技术与理论研究[D]. 西安: 长安大学, 2010.

    WANG Jian-feng. Research on vehicle technology on road three-dimension measurement[D]. Xi'an: Chang'an University, 2010. (in Chinese)
    [19]
    王耀东, 余祖俊, 白彪, 等. 基于图像处理的地铁隧道裂缝识别算法研究[J]. 仪器仪表学报, 2014, 35(7): 1489-1496. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201407007.htm

    WANG Yao-dong, YU Zu-jun, BAI Biao, et al. Research on image processing based subway tunnel crack identification algorithm[J]. Chinese Journal of Scientific Instrument, 2014, 35(7): 1489-1496. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201407007.htm
    [20]
    徐志刚, 车艳丽, 李金龙, 等. 路面破损图像自动处理技术研究进展[J]. 交通运输工程学报, 2019, 19(1): 172-190. doi: 10.3969/j.issn.1671-1637.2019.01.017

    XU Zhi-gang, CHE Yan-li, LI Jin-long, et al. Research progress on automatic image processing technology for pavement distress[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 172-190. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.01.017
    [21]
    张素磊, 陈淮, 王亚琼. 基于灰色突变理论的隧道衬砌裂缝诊断模型[J]. 交通运输工程学报, 2015, 15(3): 34-40. doi: 10.3969/j.issn.1671-1637.2015.03.006

    ZHANG Su-lei, CHEN Huai, WANG Ya-qiong. Diagnostic model of crack for tunnel lining based on gray and catastrophe theories[J]. Journal of Traffic and Transportation Engineering, 2015, 15(3): 34-40. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.03.006
    [22]
    UPADHYAY J, JAISWAL A. A joint implementation of adaptive histogram equalization and interpolation[J]. Optik—International Journal for Light and Electron Optics, 2015, 126(24): 5936-5940. doi: 10.1016/j.ijleo.2015.08.150
    [23]
    VYAVAHARE A J, THOOL R C. Segmentation using region growing algorithm based on CLAHE for medical images[C]//ART. Fourth International Conference on Advances in Recent Technologies in Communication and Computing Banglore: ART, 2012: 182-185.
    [24]
    贺东霞. 数字图像去噪算法的研究与应用[D]. 延安: 延安大学, 2015.

    HE Dong-xia. The research and application of digital image de-noising algorithm[D]. Yan'an: Yan'an University, 2015. (in Chinese)
    [25]
    姒绍辉, 胡伏原, 顾亚军, 等. 一种基于不规则区域的高斯滤波去噪算法[J]. 计算机科学, 2014, 41(11): 313-316. doi: 10.11896/j.issn.1002-137X.2014.11.062

    SI Shao-hui, HU Fu-yuan, GU Ya-jun, et al. Improved denoising algorithm based on non-regular area Gaussian filtering[J]. Computer Science, 2014, 41(11): 313-316. (in Chinese) doi: 10.11896/j.issn.1002-137X.2014.11.062
    [26]
    FIRESTER A H. The thin lens equation for optical parametric image conversion[J]. Opto-electronics, 1969, 1(3): 183-142.
    [27]
    GATOS B, NTIROGIANNIS K, PRATIKAKIS I. DIBCO 2009: document image binarization contest[J]. International Journal on Document Analysis and Recognition, 2011, 14(1): 35-44. doi: 10.1007/s10032-010-0115-7
    [28]
    卜文斌, 游福成, 李泉, 等. 一种基于大津法改进的图像分割方法[J]. 北京印刷学院学报, 2015, 23(4): 76-78, 82. doi: 10.3969/j.issn.1004-8626.2015.04.018

    BU Wen-bin, YOU Fu-cheng, LI Quan, et al. An improved image segmentation method based on Otsu[J]. Journal of Beijing Institute of Graphic Communication, 2015, 23(4): 76-78, 82. (in Chinese) doi: 10.3969/j.issn.1004-8626.2015.04.018
    [29]
    NIU Jin-xing, JIANG Ya-jie, FU Ya-yun. Research on image sharpening algorithm in weak light environment[J]. IET Image Processing, 2020, 14(15): 3635-3638. doi: 10.1049/iet-ipr.2019.1588
    [30]
    CAO P C, WOOK J J. Efficient image sharpening and denoising using adaptive guided image filtering[J]. IET Image Processing, 2015, 9(1): 71-79. doi: 10.1049/iet-ipr.2013.0563
    [31]
    CHENG Zhuang, WANG Jian-feng. Improved region growing method for image segmentation of three-phase materials[J]. Powder Technology, 2020(368): 80-89.
    [32]
    POHLE R, TOENNIES K D. Segmentation of medical images using adaptive region growing[J]. Proceedings of SPIE, 2001, 4322: 1337-1346. doi: 10.1117/12.431013
    [33]
    XUE Yong-an, ZHAO Jin-ling, ZHANG Ming-mei. A watershed-segmentation-based improved algorithm for extracting cultivated land boundaries[J]. Remote Sensing, 2021, 13(5): 939-939. doi: 10.3390/rs13050939
    [34]
    尹冠生, 赵振宇, 徐兵. 基于图像处理的桥梁裂缝检测技术[J]. 四川建筑科学研究, 2013, 39(2): 125-128. doi: 10.3969/j.issn.1008-1933.2013.02.027

    YIN Guan-sheng, ZHAO Zhen-yu, XU bing. Bridge crack detection technology based on image processing[J]. Sichuan Building Science, 2013, 39(2): 125-128. (in Chinese) doi: 10.3969/j.issn.1008-1933.2013.02.027
    [35]
    张振海, 尹晓珍, 王阳萍, 等. 基于特征分析的图像式地铁隧道裂缝检测方法研究[J]. 铁道科学与工程学报, 2019, 16(11): 2791-2800. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201911019.htm

    ZHANG Zhen-hai, YIN Xiao-zhen, WANG Yang-ping, et al. Research on image-based crack detection method for subway tunnel based on feature analysis[J]. Journal of Railway Science and Engineering, 2019, 16(11): 2791-2800. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201911019.htm
    [36]
    胡皙. 基于图像处理的地铁隧道裂缝检测技术研究[D]. 北京: 北京交通大学, 2014.

    HU Xi. Research on subway tunnel crack detection technology based on image processing[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese)
    [37]
    WANG Wei-xing, WANG Meng-fei, LI Hong-xia, et al. Pavement crack image acquisition methods and crack extraction algorithms: a review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2019, 6(6): 535-556. doi: 10.1016/j.jtte.2019.10.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (950) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return