Volume 22 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
YANG Bing, RONG You-xin, YANG Guang-wu, XIAO Shou-ne, ZHU Tao. Thermal-mechanical coupling analysis of three-dimensional elastic-plastic wheel-rail sliding contact[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 208-218. doi: 10.19818/j.cnki.1671-1637.2022.02.016
Citation: YANG Bing, RONG You-xin, YANG Guang-wu, XIAO Shou-ne, ZHU Tao. Thermal-mechanical coupling analysis of three-dimensional elastic-plastic wheel-rail sliding contact[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 208-218. doi: 10.19818/j.cnki.1671-1637.2022.02.016

Thermal-mechanical coupling analysis of three-dimensional elastic-plastic wheel-rail sliding contact

doi: 10.19818/j.cnki.1671-1637.2022.02.016
Funds:

National Key Research and Development Program of China 2021YFB3400703

International Science and Technology Innovation Cooperation Project of Sichuan 2022YFH0075

Independent Project of State Key Laboratory of Traction Power 2022TPL-T03

More Information
  • Author Bio:

    YANG Bing(1979-), male, professor, PhD, yb@swjtu.edu.cn

  • Received Date: 2021-11-27
  • Publish Date: 2022-04-25
  • To improve the accuracy of thermal response analysis of wheel-rail sliding contact, on the basis of the Johnson-Cook material model, fully considering the temperature correlation of various material properties including the friction coefficient, three heat transfer modes, and the actual wheel-rail profile, a full-scale three-dimensional elastic-plastic wheel-rail sliding contact finite element model was established. The thermal-mechanical coupling analysis of the wheel-rail in sliding contact state was carried out by using the fully coupling method. The wheel-rail temperature field and stress field distribution characteristics were studied when the wheel slid along the rail at a speed of 1 m·s-1 for 0.1 s, and the effects of the axle load and relative sliding speed on the temperature field of the wheel-rail contact area were analyzed. The variation relationships of the depth of the heat-affected layer, the width of the heat-affected layer, and the temperature of the wheel-rail surface with the axle load and relative sliding speed were obtained. Analysis results show that the maximum equivalent stress of the wheel and rail occurs at the center of the subsurface contact patch, and the maximum temperature on the wheel surface occurs at the center of the rear part of the contact patch. The maximum temperature on the rail surface is lower than that on the wheel surface as the latter is 848 ℃, and the former is 768 ℃. The heat-affected layer of the wheel and rail is very thin, with the depth of the heat-affected layer for the wheel being about 4.22 mm and that for the rail being about 3 mm. The depth of the heat-affected layer for the wheel and rail has no significant change with the increase in the axle load, but the width increases with the increase in the axle load. The depth of the heat-affected layer for the wheel and rail decreases with the increase in the relative sliding speed, but the width has no significant change with the increase in the relative sliding speed. The temperature of wheel-rail surface increases with the increase in the axle load and relative sliding speed, and the relative sliding speed has a greater effect on the wheel-rail thermal response. The full-scale three-dimensional finite element model for the elastic-plastic wheel-rail sliding contact and the thermal-mechanical fully coupling method can more accurately predict the thermal response of wheel-rail sliding contact, which is of great significance for the rational research on the wheel-rail thermal damage and thermal fatigue. 3 tabs, 15 figs, 31 refs.

     

  • loading
  • [1]
    KENNEDY T C, WAY C, HARDER R F. Modeling of martensite formation in railcar wheels due to wheel slides[C]//EKBERG A, KABO E, RINGSBERG J. Proceedings of the Sixth International Conference on Contact Mechanics and Wear of Rail/Wheel Systems. Gothenburg: Chalmers University of Technology, 2003: 511-516.
    [2]
    XIONG Jia-yang, DENG Yong-quan, CAO Ya-bo, et al. Wheel-rail wear on heavy haul lines and its influences on running stability of trains[J]. Journal of Southwest Jiaotong University, 2014, 49(2): 302-309. (in Chinese) doi: 10.3969/j.issn.0258-2724.2014.02.018
    [3]
    YANG Xin-wen, GU Shao-jie, ZHOU Shun-hua, et al. Analysis of rail thermal phase transformation due to wheel-rail sliding contact for heavy-haul railway with 30 t axle-load[J]. Journal of the China Railway Society, 2016, 38(7): 84-90. (in Chinese) doi: 10.3969/j.issn.1001-8360.2016.07.012
    [4]
    BÖHMER A, ERTZ M, KNOTHE K. Shakedown limit of rail surfaces including material hardening and thermal stresses[J]. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26(10): 985-998. doi: 10.1046/j.1460-2695.2003.00690.x
    [5]
    AHLSTRÖM J, KARLSSON B. Modelling of heat conduction and phase transformations during sliding of railway wheels[J]. Wear, 2002, 253(1/2): 291-300.
    [6]
    CHEN Y Z, HE C G, ZHAO X J, et al. The influence of wheel flats formed from different braking conditions on rolling contact fatigue of railway wheel[J]. Engineering Failure Analysis, 2018, 93: 183-199. doi: 10.1016/j.engfailanal.2018.07.006
    [7]
    AHLSTRÖM J, KARLSSON B. Analytical 1D model for analysis of the thermally affected zone formed during railway wheel skid[J]. Wear, 1999, 232(1): 15-24. doi: 10.1016/S0043-1648(99)00167-2
    [8]
    GUO Jun, ZHAO Xin, JIN Xue-song, et al. Analysis of wheel/rail thermo-mechanical coupling effects in sliding case[J]. Tribology, 2006, 26(5): 489-493. (in Chinese) doi: 10.3321/j.issn:1004-0595.2006.05.019
    [9]
    ZHAO Xin, JIN Xue-song, WEN Ze-feng, et al. Thermoelastic stresses due to wheel-rail contact in pure sliding state[J]. Journal of Southwest Jiaotong University, 2008, 43(1): 51-56. (in Chinese) doi: 10.3969/j.issn.0258-2724.2008.01.010
    [10]
    CHEN Y C, LEE S Y. Elastic-plastic wheel-rail thermal contact on corrugated rails during wheel braking[J]. Journal of Tribology, 2009, 131(1): 1-9.
    [11]
    TALAMINI B, GORDON J, PERLMAN A B. Investigation of the effects of sliding on wheel tread damage[C]//ASME. International Mechanical Engineering Congress and Exposition. New York: ASME, 2005: 119-125.
    [12]
    LI Wei, WEN Ze-feng, WU Lei, et al. Thermo-elasto-plastic finite element analysis of rail during wheel sliding[J]. Journal of Mechanical Engineering, 2010, 46(10): 95-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201010019.htm
    [13]
    LI Wei, WEN Ze-feng, WU Lei, et al. Thermo-mechanical coupling analysis of rail in rolling-sliding contact[J]. Engineering Mechanics, 2010, 27(8): 199-204, 216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201008035.htm
    [14]
    LI Wei, WEN Ze-feng, WU Lei, et al. Thermo-mechanical coupling FEM analysis of rail during wheel sliding[J]. Lubrication Engineering, 2009, 34(1): 24-28. (in Chinese) doi: 10.3969/j.issn.0254-0150.2009.01.007
    [15]
    LIU Yang, JIANG Shuo, WU Ya-ping, et al. Effects of spallation on rail thermo-elasto-plasticity in wheel-rail sliding contact[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 46-55. (in Chinese) doi: 10.3969/j.issn.1671-1637.2016.02.006
    [16]
    LIU Yang, LIU Zhen, WU Ya-ping, et al. Thermo-elasto-plastic analysis of wheel-rail sliding contact stress with variable friction coefficient[J]. China Railway Science, 2015, 36(5): 87-93. (in Chinese) doi: 10.3969/j.issn.1001-4632.2015.05.13
    [17]
    SHI Xi, WU Ai-zhong, JIN Chuan, et al. Thermomechanical modeling and transient analysis of sliding contacts between an elastic-plastic asperity and a rigid isothermal flat[J]. Tribology International, 2015, 81: 53-60. doi: 10.1016/j.triboint.2014.08.004
    [18]
    WU Lei, WEN Ze-feng, LI Wei, et al. Thermo-elastic-plastic finite element analysis of wheel/rail sliding contact[J]. Wear, 2011, 271(1/2): 437-443.
    [19]
    WU Lei, WEN Ze-feng, JIN Xue-song. Finite element analysis of wheel/rail frictional temperature during wheel complete slides on rail[J]. Chinese Journal of Mechanical Engineering, 2008, 44(3): 57-63. (in Chinese) doi: 10.3321/j.issn:0577-6686.2008.03.010
    [20]
    WU Lei, WEN Ze-feng, JIN Xue-song. Wheel/rail frictional temperature analysis under wheel rolling[J]. Engineering Mechanics, 2007, 24(10): 150-155. (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.10.026
    [21]
    XIAO Qian, ZHANG Hai, WANG Cheng-guo, et al. Thermal mechanical coupling analysis of wheel rail rolling and sliding contacts under functional friction coefficient[J]. China Railway Science, 2013, 34(4): 60-65. (in Chinese) doi: 10.3969/j.issn.1001-4632.2013.04.10
    [22]
    XIAO Qian, WANG Cheng-guo, ZHOU Xin-jian, et al. Analysis on the characteristics of wheel/rail rolling contact under different friction coefficient[J]. China Railway Science, 2011, 32(4): 66-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201104013.htm
    [23]
    XIAO Qian, LIN Feng-tao, WANG Cheng-guo, et al. Analysis on wheel-rail rolling contact characteristics with variable friction coefficient[J]. Journal of the China Railway Society, 2012, 34(6): 24-28. (in Chinese) doi: 10.3969/j.issn.1001-8360.2012.06.005
    [24]
    CAPRIOLI S, EKBERG A. Numerical evaluation of the material response of a railway wheel under thermomechanical braking conditions[J]. Wear, 2014, 314(1/2): 181-188.
    [25]
    WU Ya-ping, WEI Yun-peng, LIU Yang, et al. 3-D analysis of thermal-mechanical behavior of wheel/rail sliding contact considering temperature characteristics of materials[J]. Applied Thermal Engineering, 2017, 115: 455-462. doi: 10.1016/j.applthermaleng.2016.12.136
    [26]
    YU Hui, WANG Zan-nong, SUN Gang. On the emergency disposal of wheel stuck in metro cars[J]. Urban Mass Transit, 2014, 17(6): 114-116, 120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201406036.htm
    [27]
    LI Da-wei, HE Kai-hu, LI Lan. Study on emergency treatment measures in the case of abnormal wheel axel jams and brake pads locking of the electric passenger car on Guiyang Metro Line 1[J]. Technology Innovation and Application, 2020(22): 128-130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY202022054.htm
    [28]
    ZHAO Xin, WEN Ze-feng, JIN Xue-song. Uneven surface effect on temperature distribution of wheel and rail contact[J]. Journal of Traffic and Transportation Engineering, 2005, 5(2): 19-22. (in Chinese) doi: 10.3321/j.issn:1671-1637.2005.02.005
    [29]
    JI Huai-zhong, SU Hang, YANG Cai-fu, et al. Friction heat induced phase transformation and spalling mechanism of train wheel steel[J]. Journal of Iron and Steel Research, 2005, 17(4): 55-59. (in Chinese) doi: 10.3321/j.issn:1001-0963.2005.04.013
    [30]
    ZHU Min, XU Guang, WANG Rui-min, et al. Study on continuous cooling transformation curves of rail steel U77CrNb[J]. Research on Iron and Steel, 2016, 44(2): 29-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTYJ201602011.htm
    [31]
    JERGÉUS J, ODENMARCK C, LUNDÉN R, et al. Full-scale railway wheel flat experiments[J]. Journal of Rail and Rapid Transit, 1999, DOI: 10.1243/0954409991530985.

Catalog

    Article Metrics

    Article views (748) PDF downloads(41) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return