Volume 22 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
DOU Shuo, LIU Zhi-ming, LI Qiang, REN Zun-song, YANG Guang-xue. Acquisition method of dynamic load of high-speed train gearbox bearing based on bench simulation model[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 219-232. doi: 10.19818/j.cnki.1671-1637.2022.02.017
Citation: DOU Shuo, LIU Zhi-ming, LI Qiang, REN Zun-song, YANG Guang-xue. Acquisition method of dynamic load of high-speed train gearbox bearing based on bench simulation model[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 219-232. doi: 10.19818/j.cnki.1671-1637.2022.02.017

Acquisition method of dynamic load of high-speed train gearbox bearing based on bench simulation model

doi: 10.19818/j.cnki.1671-1637.2022.02.017
Funds:

National Natural Science Foundation of China 11790281

More Information
  • To acquire the dynamic loads of gearbox bearings for high-speed trains under the operational vibration environment, a bench simulation model for the gearbox of a high-speed train was built using the dynamics software SIMPACK. The multi-point coherent random vibration control algorithm based on the spectrum correction was used to reproduce the multi-point coherent line excitation on the gearbox by applying the longitudinal, lateral, and vertical measured acceleration power spectra of the axle box with a virtual exciter. Moreover, for the cylindrical roller bearing on the motor side of the gearbox input shaft, the bench simulation model was employed to obtain its radial load and center trajectory and the contact load between the roller and outer ring raceway under the operational vibration environment. Analysis results indicate that by the control algorithm based on the spectrum correction, when the optimization speed index is 0.3, the relative error between the simulated and measured acceleration power spectra of the axle box tends to be stable after 10 iterations, and the maximum relative error is less than 10%. Under different input torques of motors, the dynamic loads of gearbox bearings with and without line excitation show that the input torque of motors determines the mean of the dynamic loads, and line excitation is the main reason for the fluctuation in the dynamic loads. The spectrum analysis reveals that the line excitation increases the energy of the radial load of the bearing in the middle and low frequency bands and gear meshing frequency. Meanwhile, the line excitation increases the contact load between the roller and the outer ring raceway, but the contact area and mean of the contact load have no significant change. When there is no line excitation, the trajectory of the bearing center vibrates along the pressure angle of gears, and the angle with the vertical axis is 26°. The line excitation makes the fluctuation range of the trajectory of the bearing center larger and more random, and no obvious characteristic is shown in any direction. So, the input torque of motors and line excitation are the main sources of the dynamic loads of gearbox bearings for high-speed trains, and the bench simulation model can provide a valuable reference for the dynamic response evaluation and load spectrum establishment of gearbox bearings for high-speed trains. 2 tabs, 20 figs, 28 refs.

     

  • loading
  • [1]
    黄冠华. 高速列车齿轮传动系统动态特性研究[D]. 成都: 西南交通大学, 2015.

    HUANG Guan-hua. Study on dynamic characteristic of gear transmission system of high-speed train[D]. Chengdu: Southwest Jiaotong University, 2015. (in Chinese)
    [2]
    王文静, 李广全, 韩俊臣, 等. 高速列车齿轮箱箱体动应力影响规律[J]. 交通运输工程学报, 2019, 19(1): 85-95. doi: 10.3969/j.issn.1671-1637.2019.01.009

    WANG Wen-jing, LI Guang-quan, HAN Jun-chen, et al. Influence rule of dynamic stress of high-speed train gearbox housing[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 85-95. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.01.009
    [3]
    李广全, 刘志明, 呙如兵, 等. 高速列车齿轮箱应力响应与疲劳损伤评估[J]. 交通运输工程学报, 2018, 18(1): 79-88. doi: 10.3969/j.issn.1671-1637.2018.01.008

    LI Guang-quan, LIU Zhi-ming, GUO Ru-bing, et al. Stress response and fatigue damage assessment of high-speed train gearbox[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 79-88. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.01.008
    [4]
    HU Wei-gang, LIU Zhi-ming, LIU De-kun, et al. Fatigue failure analysis of high-speed train gearbox housings[J]. Engineering Failure Analysis, 2017, 73: 57-71. doi: 10.1016/j.engfailanal.2016.12.008
    [5]
    WANG Zhi-wei, MEI Gui-ming, ZHANG Wei-hua, et al. Effects of polygonal wear of wheels on the dynamic performance of the gearbox housing of a high-speed train[J]. Journal of Rail and Rapid Transit, 2018, 232(6): 1852-1863. doi: 10.1177/0954409717752998
    [6]
    ZHANG Bing, TAN A C C, LIN Jian-hui. Gearbox fault diagnosis of high-speed railway train[J]. Engineering Failure Analysis, 2016, 66: 407-420. doi: 10.1016/j.engfailanal.2016.04.020
    [7]
    李广全, 王文静, 杨广雪. 高速列车齿轮箱载荷特性分析[J]. 机械工程学报, 2018, 54(4): 270-277. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804039.htm

    LI Guang-quan, WANG Wen-jing, YANG Guang-xue. Analysis on load characteristics of high-speed train gearbox[J]. Journal of Mechanical Engineering, 2018, 54(4): 270-277. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804039.htm
    [8]
    HUANG Guan-hua, ZHOU Ning, ZHANG Wei-hua. Effect of internal dynamic excitation of the traction system on the dynamic behavior of a high-speed train[J]. Journal of Rail and Rapid Transit, 2016, 230(8): 1899-1907. doi: 10.1177/0954409715617787
    [9]
    黄冠华, 王兴宇, 梅桂明, 等. 内外激励下高速列车齿轮箱箱体动态响应分析[J]. 机械工程学报, 2015, 51(12): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201512016.htm

    HUANG Guan-hua, WANG Xing-yu, MEI Gui-ming, et al. Dynamic response analysis of gearbox housing system subjected to internal and external excitation in high-speed train[J]. Journal of Mechanical Engineering, 2015, 51(12): 95-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201512016.htm
    [10]
    朱海燕. 高速动车组齿轮箱箱体振动特性及疲劳失效研究[D]. 成都: 西南交通大学, 2019.

    ZHU Hai-yan. Study on vibration behaviour and fatigue failure of gearbox housing of high speed EMU[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
    [11]
    WU Hao, WU Ping-bo, LI Fan-song, et al. Fatigue analysis of the gearbox housing in high-speed trains under wheel polygonization using a multibody dynamics algorithm[J]. Engineering Failure Analysis, 2019, 100: 351-364. doi: 10.1016/j.engfailanal.2019.02.058
    [12]
    朱海燕, 王超文, 邬平波, 等. 基于小滚轮高频激励的高速列车齿轮箱箱体振动试验[J]. 交通运输工程学报, 2020, 20(5): 135-150. doi: 10.19818/j.cnki.1671-1637.2020.05.011

    ZHU Hai-yan, WANG Chao-wen, WU Ping-bo, et al. High-speed train gearbox housing vibration test based on small roller high-frequency excitation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 135-150. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.011
    [13]
    宫海彬. 高速列车传动系统可靠性试验方法研究[D]. 长春: 吉林大学, 2013.

    GONG Hai-bin. Research on reliability test method of high-speed train drive system[D]. Changchun: Jilin University, 2013. (in Chinese)
    [14]
    林新海, 关云辉. 地铁车辆齿轮箱加速疲劳试验方法研究[J]. 轨道交通装备与技术, 2014(3): 20-21. doi: 10.3969/j.issn.2095-5251.2014.03.008

    LIN Xin-hai, GUAN Yun-hui. Research on accelerated fatigue test method of metro vehicle gearbox[J]. Rail Transportation Equipment and Technology, 2014(3): 20-21. (in Chinese) doi: 10.3969/j.issn.2095-5251.2014.03.008
    [15]
    查浩, 任尊松, 徐宁. 车轮扁疤激起的轴箱轴承冲击特性[J]. 交通运输工程学报, 2020, 20(4): 165-173. doi: 10.19818/j.cnki.1671-1637.2020.04.013

    ZHA Hao, REN Zun-song, XU Ning. Impact characteristics of axle box bearing due to wheel flat scars[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 165-173. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.013
    [16]
    WANG Zhi-wei, CHENG Yao, ALLEN P, et al. Analysis of vibration and temperature on the axle box bearing of a high-speed train[J]. Vehicle System Dynamics, 2020, 58(10): 1605-1628. doi: 10.1080/00423114.2019.1645340
    [17]
    LI Tao, SUN Wei, MENG Zhi-chao, et al. Dynamic investigation on railway vehicle considering the dynamic effect from the axle box bearings[J]. Advances in Mechanical Engineering, 2019, 11(4): 1-13.
    [18]
    刘德昆, 李强, 王曦, 等. 动车组轴箱轴承基于实测载荷的寿命预测方法[J]. 机械工程学报, 2016, 52(22): 45-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201622007.htm

    LIU De-kun, LI Qiang, WANG Xi, et al. Life prediction method for EMU axle box bearings based on actual measured loadings[J]. Journal of Mechanical Engineering, 2016, 52(22): 45-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201622007.htm
    [19]
    HOU Yu, WANG Xi. Development of an experimental system to measure the cage slip of cylindrical roller bearing[J]. Structural Health Monitoring, 2020, 19(2): 510-519. doi: 10.1177/1475921719856826
    [20]
    HELSEN J, VANHOLLEBEKE F, MARRANT B, et al. Multibody modelling of varying complexity for modal behaviour analysis of wind turbine gearboxes[J]. Renewable Energy, 2011, 36(11): 3098-3113. doi: 10.1016/j.renene.2011.03.023
    [21]
    YANG Yi, MACE B R, KINGAN M J. A wave and finite element based homogenised model for predicting sound transmission through honeycomb panels[J]. Journal of Sound and Vibration, 2019, 463: 114963. doi: 10.1016/j.jsv.2019.114963
    [22]
    朱宁. 高速列车转向架构架结构损伤一致性载荷谱理论研究[D]. 北京: 北京交通大学, 2016.

    ZHU Ning. Theoretical research of damage consistency load spectra on bogie frame structures of high-speed trains[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)
    [23]
    孙刚, 任尊松, 辛欣, 等. 高速动车组齿轮传动系统振动特性[J]. 机械工程学报, 2019, 55(18): 104-111. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201918014.htm

    SUN Gang, REN Zun-song, XIN Xin, et al. Dynamics of gear transmission system of high-speed vehicle[J]. Journal of Mechanical Engineering, 2019, 55(18): 104-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201918014.htm
    [24]
    杨强. 基于轴箱振动的轨道不平顺估计方法研究[D]. 成都: 西南交通大学, 2013.

    YANG Qiang. Research on estimation methods of track irregularities based on axle-box vibration[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese)
    [25]
    孙琦, 张兵, 李艳萍, 等. 一种波长固定的车轮多边形在线故障检测方法[J]. 铁道科学与工程学报, 2018, 15(9): 2343-2348. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201809022.htm

    SUN Qi, ZHANG Bing, LI Yan-ping, et al. Wavelength-fixing mechanisms for detecting the wheel polygon-shaped fault onsite[J]. Journal of Railway Science and Engineering, 2018, 15(9): 2343-2348. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201809022.htm
    [26]
    刘力. 基于车辆轴箱振动加速度的钢轨波磨检测方法研究[D]. 成都: 西南交通大学, 2018.

    LIU Li. Research on the detection method of rail corrugation based on vibration acceleration of a vehicle axle box[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [27]
    豆硕, 刘志明, 毛立勇. 基于谱修正法的多维随机载荷时域模拟[J]. 华南理工大学学报(自然科学版), 2021, 49(8): 140-148. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202108016.htm

    DOU Shuo, LIU Zhi-ming, MAO Li-yong. Multi-dimensional random load time domain simulation based on spectrum correction method[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(8): 140-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202108016.htm
    [28]
    张志, 孟少平, 周臻, 等. 振动台试验加速度积分方法[J]. 振动、测试与诊断, 2013, 33(4): 627-633, 725. doi: 10.3969/j.issn.1004-6801.2013.04.016

    ZHANG Zhi, MENG Shao-ping, ZHOU Zhen, et al. Numerical integration method of acceleration recodes for shaking table test[J]. Journal of Vibration, Measurement and Diagnosis, 2013, 33(4): 627-633, 725. (in Chinese) doi: 10.3969/j.issn.1004-6801.2013.04.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (460) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return