Citation: | CHEN Wan-tong, TIAN Shu-yu. Rapid prediction and rerouting planning method of suborbital debris hazard zones during high-density space launches[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 268-276. doi: 10.19818/j.cnki.1671-1637.2022.02.021 |
[1] |
GONG Y K, QIN T, WEI W, et al. Analysis of international commercial space market and policy[J]. Aerospace China, 2019, 20(4): 39-48. doi: 10.1007/978-3-662-55669-6_2
|
[2] |
ROMITO J. Bringing Columbia home: the untold story of a lost space shuttle and her crew[J]. Air Power History, 2018, 65(1): 55-56. https://searchworks.stanford.edu/view/12285029
|
[3] |
MORLANG F, FERRAND J, SEKER R. Why a future commercial spacecraft must be able to SWIM[J]. Journal of Space Safety Engineering, 2017, 4(1): 5-8. doi: 10.1016/j.jsse.2017.03.003
|
[4] |
KALTENHÄUSER S, MORLANG F, LUCHKOVA T, et al. Facilitating sustainable commercial space transportation through an efficient integration into air traffic management[J]. New Space, 2017, 5(4): 244-256. doi: 10.1089/space.2017.0010
|
[5] |
KARR D A, VIVONA R A, WOODS S, et al. Point-mass aircraft trajectory prediction using a hierarchical, highly-adaptable software design[C]//AIAA. 2017 Modeling and Simulation Technologies Conference. Reston: AIAA, 2017: 1-12.
|
[6] |
FALSONE A, PRANDINI M. A randomized approach to probabilistic footprint estimation of a space debris uncontrolled reentry[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(10): 2657-2666. doi: 10.1109/TITS.2017.2654511
|
[7] |
FALSONE A, NOCE F, PRANDINI M. A randomized approach to space debris footprint characterization[J]. IFAC Proceedings Volumes, 2014, 47(3): 6895-6900. doi: 10.3182/20140824-6-ZA-1003.00612
|
[8] |
YOUNG J E, KEE M G E, YOUNG C M. Effects of future launch and reentry operations on the national airspace system[J]. Journal of Air Transportation, 2017, 25(1): 8-16. doi: 10.2514/1.D0039
|
[9] |
HILTON S, SABATINI R, GARDI A, et al. Space traffic management: towards safe and unsegregated space transport operations[J]. Progress in Aerospace Sciences, 2019, 105: 98-125. doi: 10.1016/j.paerosci.2018.10.006
|
[10] |
COLVIN T J, ALONSO J J. Near-elimination of airspace disruption from commercial space traffic using compact envelopes[C]//AIAA. AIAA Space 2015 Conference and Exposition. Reston: AIAA, 2015: 1-13.
|
[11] |
COLVIN T J, ALONSO J J. Compact envelopes and SU-FARM for integrated air-and-space traffic management[C]//AIAA. 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015: 1-20.
|
[12] |
STANSBURY R S, TOWHIDNEJAD M, TOURNOUR D, et al. Demonstration and evaluation of ADS-B technology for commercial space operations onboard reusable sub-orbital launch vehicles[C]//IEEE. 14th Integrated Communications, Navigation and Surveillance Conference. New York: IEEE, 2014: 1-10.
|
[13] |
TOMPA R E, KOCHENDERFER M J. Optimal aircraft rerouting during space launches using adaptive spatial discretization[C]//IEEE. 37th Digital Avionics Systems Conference. New York: IEEE, 2018: 1-7.
|
[14] |
王兴隆, 徐肖豪, 冯江然. 基于改进人工势场法的多机改航路径规划[J]. 飞行力学, 2013, 31(4): 381-384. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201304021.htm
WANG Xing-long, XU Xiao-hao, FENG Jiang-ran. Multi-aircraft rerouting path planning based on improved artificial potential field algorithm[J]. Flight Dynamics, 2013, 31(4): 381-384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201304021.htm
|
[15] |
田文, 杨帆, 尹嘉男, 等. 航路时空资源分配的多目标优化方法[J]. 交通运输工程学报, 2020, 20(6): 218-226. doi: 10.19818/j.cnki.1671-1637.2020.06.019
TIAN Wen, YANG Fan, YIN Jia-nan, et al. Multi-objective optimization method of air route space-time resources allocation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 218-226. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.019
|
[16] |
王帝. 基于Maklink图与遗传算法的动态改航策略研究[J]. 航空计算技术, 2019, 49(1): 50-53. doi: 10.3969/j.issn.1671-654X.2019.01.012
WANG Di. Research on dynamic navigation change strategy based on Maklink diagram and genetic algorithms[J]. Aeronautical Computing Technique, 2019, 49(1): 50-53. (in Chinese) doi: 10.3969/j.issn.1671-654X.2019.01.012
|
[17] |
JULIAN K D, LOPEZ J, BRUSH J S, et al. Policy compression for aircraft collision avoidance systems[C]//IEEE. 35th Digital Avionics Systems Conference. New York: IEEE, 2016: 1-10.
|
[18] |
TOMPA R E, KOCHENDERFER M J, COLE R, et al. Optimal aircraft rerouting during commercial space launches[C]//IEEE. 34th Digital Avionics Systems Conference. New York: IEEE, 2015: 1-9.
|
[19] |
TOMPA R E, KOCHENDERFER M J. Efficient aircraft rerouting during commercial space launches[J]. New Space, 2019, 7(1): 12-18. doi: 10.1089/space.2018.0032
|
[20] |
BOJORQUEZ O J, CHEN J. Risk level analysis forhazard area during commercial space launch[C]//IEEE. 38th Digital Avionics Systems Conference. New York: IEEE, 2019: 1-6.
|
[21] |
BOJORQUEZ O, DOLAN N, CHEN J. Aircraft rerouting under risk tolerance during space launches[C]//AIAA. AIAA Scitech 2020 Forum. Reston: AIAA, 2020: 1-14.
|
[22] |
LEE D J, CHOI E J, CHO S, et al. Effective computational approach for prediction and estimation of space object breakup dispersion during uncontrolled reentry[J]. International Journal of Aerospace Engineering, 2018, 2018: 6824978. http://downloads.hindawi.com/journals/ijae/2018/6824978.pdf
|
[23] |
BILITZA D, ALTADILL D, TRUHLIK V, et al. International reference ionosphere 2016: from ionospheric climate to real-time weather predictions[J]. Space Weather, 2017, 15(2): 418-429. doi: 10.1002/2016SW001593
|
[24] |
TANG Qiong, ZHOU Yu-feng, DU Zhi-tao, et al. A comparison of meteor radar observation over China region with horizontal wind model (HWM14)[J]. Atmosphere, 2021, 12(1): 98. doi: 10.3390/atmos12010098
|
[25] |
REYHANOGLU M, ALVARADO J. Estimation of debris dispersion due to a space vehicle breakup during reentry[J]. Acta Astronautica, 2013, 86: 211-218. doi: 10.1016/j.actaastro.2013.01.018
|
[26] |
谢春生, 李雄. 危险天气影响航路飞行区域的划设及评估[J]. 中国安全科学学报, 2010, 20(10): 47-52. doi: 10.3969/j.issn.1003-3033.2010.10.009
XIE Chun-sheng, LI Xiong. Division and evaluation of flight forbidden area in severe weather[J]. China Safety Science Journal, 2010, 20(10): 47-52. (in Chinese) doi: 10.3969/j.issn.1003-3033.2010.10.009
|
[27] |
李雄. 飞行危险天气下的航班改航路径规划研究[D]. 南京: 南京航空航天大学, 2009.
LI Xiong. Flight rerouting path planning in severe weather[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)
|
[28] |
王瑛, 郑煜坤, 姚頔, 等. 危险天气下改航路径网络规划[J]. 系统工程与电子技术, 2019, 41(6): 1309-1315. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201906019.htm
WANG Ying, ZHENG Yu-kun, YAO Di, et al. Rerouting path network planning under dangerous weather[J]. Systems Engineering and Electronics, 2019, 41(6): 1309-1315. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201906019.htm
|
[29] |
胡锐锋, 龚自正, 吴子牛. 无控航天器与空间碎片再入的工程预测方法研究现状[J]. 航天器环境工程, 2014, 31(5): 548-557. doi: 10.3969/j.issn.1673-1379.2014.05.017
HU Rui-feng, GONG Zi-zheng, WU Zi-niu. Engineering methods for reentry prediction of uncontrolled spacecraft and space debris: the state of the art[J]. Spacecraft Environment Engineering, 2014, 31(5): 548-557. (in Chinese) doi: 10.3969/j.issn.1673-1379.2014.05.017
|
[30] |
柳敏. 基于RNP需求的大型客机导航信息综合处理及性能评估[D]. 南京: 南京航空航天大学, 2017.
LIU Min. Comprehensive processing and performance evaluation of airliner navigation information based on RNP requirement[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. (in Chinese)
|