Volume 22 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
CHEN Wan-tong, TIAN Shu-yu. Rapid prediction and rerouting planning method of suborbital debris hazard zones during high-density space launches[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 268-276. doi: 10.19818/j.cnki.1671-1637.2022.02.021
Citation: CHEN Wan-tong, TIAN Shu-yu. Rapid prediction and rerouting planning method of suborbital debris hazard zones during high-density space launches[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 268-276. doi: 10.19818/j.cnki.1671-1637.2022.02.021

Rapid prediction and rerouting planning method of suborbital debris hazard zones during high-density space launches

doi: 10.19818/j.cnki.1671-1637.2022.02.021
Funds:

National Key Research and Development Program of China 2020YFB1600101

National Natural Science Foundation of China U1833112

Scientific Research Program of Tianjin Municipal Education Commission 2020KJ011

Natural Science Foundation of Tianjin 19JCQNJC00800

More Information
  • Author Bio:

    CHEN Wan-tong (1986-), male, associate professor, PhD, chenbnu@126.com

  • Received Date: 2021-10-21
  • Publish Date: 2022-04-25
  • Considering the potential risk of aircraft disintegration that may occur in the increasingly frequent commercial suborbital launch activities, a covariance propagation method was used to predict the propagation range of debris from the suborbital disintegration accidents. The method converted the debris motion equation into a Gaussian-Markov process and used the probability density function to construct a probability ellipsoid of the Gaussian-Markov process at a certain confidence level for the characterization of debris distribution. To avoid the collision risk between debris from suborbital disintegration accidents and aircrafts within the civil airspace, a hazard zone prediction and routing planning method of suborbital debris for air traffic control was proposed. The mathematical boundary of the probability ellipsoid of suborbital debris was determined according to the acceptable risk probability of civil aviation, and the projection of the probability ellipsoid in the horizontal direction was calculated. The hazard zone of debris was processed into a convex polygon by a geometric method. The number of diversion points in the diversion path was reduced by the constrained method, which was conducive to the smooth diversion of aircraft. Simulation results reveal that the covariance propagation method can rapidly and effectively predict the propagation process of debris from suborbital disintegration accidents in a complex atmospheric environment, showing the ellipsoid boundary range of 99.999% and 95.000%, respectively. The higher the confidence degree, the larger the boundary range of the probability ellipsoid, and the closer it is to the real debris falling propagation range. By using the constrained method of number of diversion points, the optimized rerouting path distance increases by 0.13% compared with that before the constraint, but the number of diversion points reduces by 50%. Therefore, the covariance propagation method can timely and accurately predict the propagation range of debris from suborbital disintegration accidents, and on this basis, efficient and safe redirecting strategies can be presented. 1 tab, 7 figs, 30 refs.

     

  • loading
  • [1]
    GONG Y K, QIN T, WEI W, et al. Analysis of international commercial space market and policy[J]. Aerospace China, 2019, 20(4): 39-48. doi: 10.1007/978-3-662-55669-6_2
    [2]
    ROMITO J. Bringing Columbia home: the untold story of a lost space shuttle and her crew[J]. Air Power History, 2018, 65(1): 55-56. https://searchworks.stanford.edu/view/12285029
    [3]
    MORLANG F, FERRAND J, SEKER R. Why a future commercial spacecraft must be able to SWIM[J]. Journal of Space Safety Engineering, 2017, 4(1): 5-8. doi: 10.1016/j.jsse.2017.03.003
    [4]
    KALTENHÄUSER S, MORLANG F, LUCHKOVA T, et al. Facilitating sustainable commercial space transportation through an efficient integration into air traffic management[J]. New Space, 2017, 5(4): 244-256. doi: 10.1089/space.2017.0010
    [5]
    KARR D A, VIVONA R A, WOODS S, et al. Point-mass aircraft trajectory prediction using a hierarchical, highly-adaptable software design[C]//AIAA. 2017 Modeling and Simulation Technologies Conference. Reston: AIAA, 2017: 1-12.
    [6]
    FALSONE A, PRANDINI M. A randomized approach to probabilistic footprint estimation of a space debris uncontrolled reentry[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(10): 2657-2666. doi: 10.1109/TITS.2017.2654511
    [7]
    FALSONE A, NOCE F, PRANDINI M. A randomized approach to space debris footprint characterization[J]. IFAC Proceedings Volumes, 2014, 47(3): 6895-6900. doi: 10.3182/20140824-6-ZA-1003.00612
    [8]
    YOUNG J E, KEE M G E, YOUNG C M. Effects of future launch and reentry operations on the national airspace system[J]. Journal of Air Transportation, 2017, 25(1): 8-16. doi: 10.2514/1.D0039
    [9]
    HILTON S, SABATINI R, GARDI A, et al. Space traffic management: towards safe and unsegregated space transport operations[J]. Progress in Aerospace Sciences, 2019, 105: 98-125. doi: 10.1016/j.paerosci.2018.10.006
    [10]
    COLVIN T J, ALONSO J J. Near-elimination of airspace disruption from commercial space traffic using compact envelopes[C]//AIAA. AIAA Space 2015 Conference and Exposition. Reston: AIAA, 2015: 1-13.
    [11]
    COLVIN T J, ALONSO J J. Compact envelopes and SU-FARM for integrated air-and-space traffic management[C]//AIAA. 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015: 1-20.
    [12]
    STANSBURY R S, TOWHIDNEJAD M, TOURNOUR D, et al. Demonstration and evaluation of ADS-B technology for commercial space operations onboard reusable sub-orbital launch vehicles[C]//IEEE. 14th Integrated Communications, Navigation and Surveillance Conference. New York: IEEE, 2014: 1-10.
    [13]
    TOMPA R E, KOCHENDERFER M J. Optimal aircraft rerouting during space launches using adaptive spatial discretization[C]//IEEE. 37th Digital Avionics Systems Conference. New York: IEEE, 2018: 1-7.
    [14]
    王兴隆, 徐肖豪, 冯江然. 基于改进人工势场法的多机改航路径规划[J]. 飞行力学, 2013, 31(4): 381-384. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201304021.htm

    WANG Xing-long, XU Xiao-hao, FENG Jiang-ran. Multi-aircraft rerouting path planning based on improved artificial potential field algorithm[J]. Flight Dynamics, 2013, 31(4): 381-384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201304021.htm
    [15]
    田文, 杨帆, 尹嘉男, 等. 航路时空资源分配的多目标优化方法[J]. 交通运输工程学报, 2020, 20(6): 218-226. doi: 10.19818/j.cnki.1671-1637.2020.06.019

    TIAN Wen, YANG Fan, YIN Jia-nan, et al. Multi-objective optimization method of air route space-time resources allocation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 218-226. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.019
    [16]
    王帝. 基于Maklink图与遗传算法的动态改航策略研究[J]. 航空计算技术, 2019, 49(1): 50-53. doi: 10.3969/j.issn.1671-654X.2019.01.012

    WANG Di. Research on dynamic navigation change strategy based on Maklink diagram and genetic algorithms[J]. Aeronautical Computing Technique, 2019, 49(1): 50-53. (in Chinese) doi: 10.3969/j.issn.1671-654X.2019.01.012
    [17]
    JULIAN K D, LOPEZ J, BRUSH J S, et al. Policy compression for aircraft collision avoidance systems[C]//IEEE. 35th Digital Avionics Systems Conference. New York: IEEE, 2016: 1-10.
    [18]
    TOMPA R E, KOCHENDERFER M J, COLE R, et al. Optimal aircraft rerouting during commercial space launches[C]//IEEE. 34th Digital Avionics Systems Conference. New York: IEEE, 2015: 1-9.
    [19]
    TOMPA R E, KOCHENDERFER M J. Efficient aircraft rerouting during commercial space launches[J]. New Space, 2019, 7(1): 12-18. doi: 10.1089/space.2018.0032
    [20]
    BOJORQUEZ O J, CHEN J. Risk level analysis forhazard area during commercial space launch[C]//IEEE. 38th Digital Avionics Systems Conference. New York: IEEE, 2019: 1-6.
    [21]
    BOJORQUEZ O, DOLAN N, CHEN J. Aircraft rerouting under risk tolerance during space launches[C]//AIAA. AIAA Scitech 2020 Forum. Reston: AIAA, 2020: 1-14.
    [22]
    LEE D J, CHOI E J, CHO S, et al. Effective computational approach for prediction and estimation of space object breakup dispersion during uncontrolled reentry[J]. International Journal of Aerospace Engineering, 2018, 2018: 6824978. http://downloads.hindawi.com/journals/ijae/2018/6824978.pdf
    [23]
    BILITZA D, ALTADILL D, TRUHLIK V, et al. International reference ionosphere 2016: from ionospheric climate to real-time weather predictions[J]. Space Weather, 2017, 15(2): 418-429. doi: 10.1002/2016SW001593
    [24]
    TANG Qiong, ZHOU Yu-feng, DU Zhi-tao, et al. A comparison of meteor radar observation over China region with horizontal wind model (HWM14)[J]. Atmosphere, 2021, 12(1): 98. doi: 10.3390/atmos12010098
    [25]
    REYHANOGLU M, ALVARADO J. Estimation of debris dispersion due to a space vehicle breakup during reentry[J]. Acta Astronautica, 2013, 86: 211-218. doi: 10.1016/j.actaastro.2013.01.018
    [26]
    谢春生, 李雄. 危险天气影响航路飞行区域的划设及评估[J]. 中国安全科学学报, 2010, 20(10): 47-52. doi: 10.3969/j.issn.1003-3033.2010.10.009

    XIE Chun-sheng, LI Xiong. Division and evaluation of flight forbidden area in severe weather[J]. China Safety Science Journal, 2010, 20(10): 47-52. (in Chinese) doi: 10.3969/j.issn.1003-3033.2010.10.009
    [27]
    李雄. 飞行危险天气下的航班改航路径规划研究[D]. 南京: 南京航空航天大学, 2009.

    LI Xiong. Flight rerouting path planning in severe weather[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)
    [28]
    王瑛, 郑煜坤, 姚頔, 等. 危险天气下改航路径网络规划[J]. 系统工程与电子技术, 2019, 41(6): 1309-1315. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201906019.htm

    WANG Ying, ZHENG Yu-kun, YAO Di, et al. Rerouting path network planning under dangerous weather[J]. Systems Engineering and Electronics, 2019, 41(6): 1309-1315. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201906019.htm
    [29]
    胡锐锋, 龚自正, 吴子牛. 无控航天器与空间碎片再入的工程预测方法研究现状[J]. 航天器环境工程, 2014, 31(5): 548-557. doi: 10.3969/j.issn.1673-1379.2014.05.017

    HU Rui-feng, GONG Zi-zheng, WU Zi-niu. Engineering methods for reentry prediction of uncontrolled spacecraft and space debris: the state of the art[J]. Spacecraft Environment Engineering, 2014, 31(5): 548-557. (in Chinese) doi: 10.3969/j.issn.1673-1379.2014.05.017
    [30]
    柳敏. 基于RNP需求的大型客机导航信息综合处理及性能评估[D]. 南京: 南京航空航天大学, 2017.

    LIU Min. Comprehensive processing and performance evaluation of airliner navigation information based on RNP requirement[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (384) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return