Citation: | CHEN Li-jia, WANG Kai, WEI Tian-ming, HAO Guo-zhu. Virtual port modeling method based on dynamic fluid field data[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 287-297. doi: 10.19818/j.cnki.1671-1637.2022.02.023 |
[1] |
TAO Fei, QI Qing-lin, WANG Li-hui, et al. Digital twins and cyber-physical systems toward smart manufacturing and industry 4.0: correlation and comparison[J]. Engineering, 2019, 5(4): 653-661. doi: 10.1016/j.eng.2019.01.014
|
[2] |
AUSTIN M, DELGOSHAEI P, COELHO M, et al. Architecting smart city digital twins: combined semantic model and machine learning approach[J]. Journal of Management in Engineering, 2020, 36(4): 04020026. doi: 10.1061/(ASCE)ME.1943-5479.0000774
|
[3] |
VARELA J M, GUEDES SOARES C. Geometry and visual realism of ship models for digital ship bridge simulators[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2017, 231(1): 329-341. doi: 10.1177/1475090216642470
|
[4] |
ZHAI Xiao-ming, YIN Yong, SHEN He-long. Modeling and rendering of river in inland river ship handling simulator[C]//IEEE. 2017 International Conference on Information, Cybernetics and Computational Social Systems. New York: IEEE, 2017: 444-449.
|
[5] |
丁晶, 赵玮丹, 曾珍. 三维港口GIS的场景组织与建设过程模拟[J]. 测绘与空间地理信息, 2016, 39(5): 27-29, 34. doi: 10.3969/j.issn.1672-5867.2016.05.008
DING Jing, ZHAO Wei-dan, ZENG Zhen. Scene organization and construction process simulation of 3D harbor GIS[J]. Geomatics and Spatial Information Technology, 2016, 39(5): 27-29, 34. (in Chinese) doi: 10.3969/j.issn.1672-5867.2016.05.008
|
[6] |
刘海宁, 刘成良, 李彦明, 等. 基于GPS/GIS的虚拟港口可视化建模[J]. 上海交通大学学报, 2009, 43(6): 866-870. doi: 10.3321/j.issn:1006-2467.2009.06.003
LIU Hai-ning, LIU Cheng-liang, LI Yan-ming, et al. Visual modeling of virtual container terminal based on GPS/GIS[J]. Journal of Shanghai Jiaotong University, 2009, 43(6): 866-870. (in Chinese) doi: 10.3321/j.issn:1006-2467.2009.06.003
|
[7] |
ZHANG Shang-hong, ZHANG Tian-xiang, WU Yu, et al. Three-dimensional waterway system for ship navigation based on integrated virtual waterway and flow simulation[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2017, 143(1): 04016011. doi: 10.1061/(ASCE)WW.1943-5460.0000354
|
[8] |
CALÌ M, AMBU R. Advanced 3D photogrammetric surface reconstruction of extensive objects by UAV camera image acquisition[J]. Sensors, 2018, 18(9): 2815. doi: 10.3390/s18092815
|
[9] |
JAMES M R, ROBSON S. Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application[J]. Journal of Geophysical Research: Earth Surface, 2012, 117: F03017. doi: 10.1029/2011JF002289
|
[10] |
QU Yu-fu, HUANG Jian-yu, ZHANG Xuan. Rapid 3D reconstruction for image sequence acquired from UAV camera[J]. Sensor, 2018, 18(1): 255. doi: 10.3390/s18010255
|
[11] |
INZERILLO L, DI MINO G, ROBERTS R. Image-based 3D reconstruction using traditional and UAV datasets for analysis of road pavement distress[J]. Automation in Construction, 2018, 96: 457-469. doi: 10.1016/j.autcon.2018.10.010
|
[12] |
VACONDIO R, DAL PALÙ A, FERRARI A, et al. A non-uniform efficient grid type for GPU-parallel shallow water equations models[J]. Environmental Modelling and Software, 2017, 88: 119-137. doi: 10.1016/j.envsoft.2016.11.012
|
[13] |
ABGRALL R, BACIGALUPPI P, TOKAREVA S. High-order residual distribution scheme for the time-dependent Euler equations of fluid dynamics[J]. Computers and Mathematics with Applications, 2019, 78(2): 274-297. doi: 10.1016/j.camwa.2018.05.009
|
[14] |
PENG Jun, ZHAI Chuan-lei, NI Guo-xi, et al. An adaptive characteristic-wise reconstruction WENO-Z scheme for gas dynamic Euler equations[J]. Computers and Fluids, 2019, 179: 34-51. doi: 10.1016/j.compfluid.2018.08.008
|
[15] |
HE Yi, BAYLY A E, HASSANPOUR A, et al. A GPU-based coupled SPH-DEM method for particle-fluid flow with free surfaces[J]. Powder Technology, 2018, 338: 548-562. doi: 10.1016/j.powtec.2018.07.043
|
[16] |
DUAN Xing-feng, REN Hong-xiang, LI Hai-jiang. Incompressible fluids simulation by relaxing the density-invariant condition in a marine simulator[J]. Mathematical Problems in Engineering, 2019, 2019: 8971089. https://www.hindawi.com/journals/mpe/2019/8971089/
|
[17] |
GAO Yang, LI Shuai, HAO Ai-min, et al. Simulating multi-scale, granular materials and their transitions with a hybrid Euler-Lagrange solver[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(12): 4483-4494. doi: 10.1109/TVCG.2021.3107597
|
[18] |
LIU Qiang, QIN Yi, LI Guo-dong. Fast simulation of large-scale floods based on GPU parallel computing[J]. Water, 2018, 10(5): 589. doi: 10.3390/w10050589
|
[19] |
YANG Cheng, YANG Xu-bo, XIAO Xiang-yun. Data-driven projection method in fluid simulation[J]. Computer Animation and Virtual Worlds, 2016, 27(3/4): 415-424. doi: 10.1007/978-3-319-41217-7_17
|
[20] |
肖祥云. 基于深度神经网络的流体动画研究[D]. 上海: 上海交通大学, 2019.
XIAO Xiang-yun. Research on deep neural network based fluid simulation[D]. Shanghai: Shanghai Jiaotong University, 2019. (in Chinese)
|
[21] |
LI Z J, FARIMANI A B. Graph neural network-accelerated Lagrangian fluid simulation[J]. Computers and Graphics, 2022, 103: 201-211. doi: 10.1016/j.cag.2022.02.004
|
[22] |
段兴锋. 航海场景中基于物理的海浪建模与绘制[D]. 大连: 大连海事大学, 2019.
DUAN Xing-feng. Modeling and rendering for physical-based ocean wave in navigation scene[D]. Dalian: Dalian Maritime University. (in Chinese)
|
[23] |
ZHANG Xue-quan, LIU Jin, HU Zi-he, et al. Flow modeling and rendering to support 3D river shipping based on cross-sectional observation data[J]. International Journal of Geo-Information, 2020, 9(3): 156. doi: 10.3390/ijgi9030156
|
[24] |
陈立家, 刘锭坤, 田延飞, 等. 面向船舶操纵模拟器的内河水流三维建模与仿真[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(4): 634-639. doi: 10.3963/j.issn.2095-3844.2020.04.009
CHEN Li-jia, LIU Ding-kun, TIAN Yan-fei, et al. 3D modeling and simulation of inland water flow for ship manipulation simulator[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2020, 44(4): 634-639. (in Chinese) doi: 10.3963/j.issn.2095-3844.2020.04.009
|
[25] |
陈立家, 王凯, 李世刚, 等. 基于航空影像的航海模拟器视景快速建模方法[J]. 系统仿真学报, 2021, 33(7): 1565-1573. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202107008.htm
CHEN Li-jia, WANG Kai, LI Shi-gang, et al. A fast maritime simulator scene modeling method based on aerial images[J]. Journal of System Simulation, 2021, 33(7): 1565-1573. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ202107008.htm
|
[26] |
PREVITALI M, DÍAZ VILARIÑO L, SCAIONI M. Indoor building reconstruction from occluded point clouds using graph-cut and ray-tracing[J]. Applied Sciences, 2018, 8(9): 1529. doi: 10.3390/app8091529
|
[27] |
GARLAND M, HECKBERT P S. Simplifying surfaces with color and texture using quadric error metrics[C]//IEEE. Proceedings of the 1998 IEEE Visualization Conference. New York: IEEE, 1998: 263-269.
|
[28] |
陈勇, 刘培艺, 李颖, 等. 大规模真实感固流交互实时绘制方法[J]. 计算机辅助设计与图形学学报, 2020, 32(3): 378-384. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF202003005.htm
CHEN Yong, LIU Pei-yi, LI Ying, et al. Real-time rendering algorithm for large-scale realistic solid-fluid interaction[J]. Journal of Computer-Aided Design and Computer Graphics, 2020, 32(3): 378-384. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF202003005.htm
|
[29] |
MINTGEN F, MANHART M. A bi-directional coupling of 2D shallow water and 3D Reynolds-averaged Navier-Stokes models[J]. Journal of Hydraulic Research, 2018, 56(6): 771-785. doi: 10.1080/00221686.2017.1419989
|
[30] |
TOMPSON J, SCHLACHTER K, SPRECHMANN P, et al. Accelerating Eulerian fluid simulation with convolutional networks[C]//ICLR. 5th International Conference on Learning Representations. La Jolla: ICLR, 2017: 3424-3433.
|