Volume 22 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
CAI Jing, CAI Kun-ye, HUANG Shi-jie. Early warning method for heavy landing of civil aircraft based on real-time monitoring parameters[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 298-309. doi: 10.19818/j.cnki.1671-1637.2022.02.024
Citation: CAI Jing, CAI Kun-ye, HUANG Shi-jie. Early warning method for heavy landing of civil aircraft based on real-time monitoring parameters[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 298-309. doi: 10.19818/j.cnki.1671-1637.2022.02.024

Early warning method for heavy landing of civil aircraft based on real-time monitoring parameters

doi: 10.19818/j.cnki.1671-1637.2022.02.024
Funds:

National Natural Science Foundation of China 51705242

National Natural Science Foundation of China U1933202

More Information
  • Author Bio:

    CAI Jing (1976-), male, associate professor, PhD, caijing@nuaa.edu.cn

  • Received Date: 2021-10-28
  • Publish Date: 2022-04-25
  • It was considered that the heavy landing events of civil aircraft can only be reported by pilots or checked passively by the maintenance personnels afterward at present, an early warning method for the heavy landing of civil aircraft based on real-time monitoring parameters was proposed. The influencing factors in heavy landing were analyzed, and on the basis of the preprocessed data of a quick access recorder (QAR), the grey relational analysis (GRA) was employed to extract 26 feature monitoring parameters from 52 monitoring parameters related to the heavy landing of aircraft. Taking the landing weight, vertical acceleration, vertical decreasing rate, and pitch rate as the prediction parameters and the 26 feature monitoring parameters as the inputs, a prediction model for the heavy landing of aircraft was built based on the long short-term memory (LSTM). The prediction model was trained with heavy landing cases, and the influence of the flight height range and the input/output step size on the prediction accuracy was analyzed to optimize the prediction model. The confusion matrix was introduced into the case verification to verify the prediction results of the model. Research results indicate that the LSTM-based prediction model can make use of the information that reflects the trend of heavy landing in the real-time monitoring data to realize early warning of heavy landing, the prediction accuracy of the model can reach 98% for 8 seconds of warning, and the average absolute error is only 0.018 3, which means the model can provide pilots adequate time margin to take measures to avoid the heavy landing. 6 tabs, 17 figs, 29 refs.

     

  • loading
  • [1]
    郭红兵. 空客飞机如何防止重着陆[J]. 西安航空技术高等专科学校学报, 2010, 28(5): 7-9. doi: 10.3969/j.issn.1008-9233.2010.05.002

    GUO Hong-bing. How to prevent airbus planes from heavy landing[J]. Journal of Xi'an Aerotechnical College, 2010, 28(5): 7-9. (in Chinese) doi: 10.3969/j.issn.1008-9233.2010.05.002
    [2]
    陈扬鉴, 李翰芝, 吕玉虎. 飞机在风切变下进场的模拟试验研究[J]. 飞行力学, 1995, 13(1): 75-83. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX501.012.htm

    CHEN Yang-jian, LI Han-zhi, LYU Yu-hu. Simulation experiment and investigation of aircraft in landing approach with wind shear[J]. Flight Dynamics, 1995, 13(1): 75-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX501.012.htm
    [3]
    许桂梅, 黄圣国. 应用LS-SVM的飞机重着陆诊断[J]. 系统工程理论与实践, 2010, 30(4): 763-768. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201004026.htm

    XU Gui-mei, HUANG Sheng-guo. Airplane's hard landing diagnosis using LS-SVM[J]. Systems Engineering-Theory and Practice, 2010, 30(4): 763-768. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL201004026.htm
    [4]
    聂磊, 黄圣国, 舒平, 等. 基于支持向量机(SVM)的民用飞机重着陆智能诊断研究[J]. 中国安全科学学报, 2009, 19(7): 149-153, 181. doi: 10.3969/j.issn.1003-3033.2009.07.025

    NIE Lei, HUANG Sheng-guo, SHU Ping, et al. Intelligent diagnosis for hard landing of aircraft based on SVM[J]. China Safety Science Journal, 2009, 19(7): 149-153, 181. (in Chinese) doi: 10.3969/j.issn.1003-3033.2009.07.025
    [5]
    曹海鹏, 舒平, 黄圣国. 基于神经网络的民用飞机重着陆诊断技术研究[J]. 计算机测量与控制, 2008, 16(7): 906-908. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK200807002.htm

    CAO Hai-ping, SHU Ping, HUANG Sheng-guo. Study of aircraft hard landing diagnosis based on nerual network[J]. Computer Measurement and Control, 2008, 16(7): 906-908. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK200807002.htm
    [6]
    蔡坤烨, 蔡景, 黄世杰. 重着陆的客户化报文设计及事故原因分析[J]. 机械设计与制造工程, 2020, 49(12): 55-58. doi: 10.3969/j.issn.2095-509X.2020.12.012

    CAI Kun-ye, CAI Jing, HUANG Shi-jie. Research on the design of customized message for aircraft hard landing and accident cause analysis[J]. Machine Design and Manufacturing Engineering, 2020, 49(12): 55-58. (in Chinese) doi: 10.3969/j.issn.2095-509X.2020.12.012
    [7]
    FORREST C, WISER D. Landing gear structural health monitoring (SHM)[J]. Procedia Structural Integrity, 2017, 5: 1153-1159. doi: 10.1016/j.prostr.2017.07.025
    [8]
    SHAO Xue-yan, QI Ming-liang, GAO Min-gang. Safety risk analysis in flight operations quality assurance[J]. Systems Engineering Procedia, 2012, 5: 81-86. doi: 10.1016/j.sepro.2012.04.013
    [9]
    汪磊, 孙瑞山, 吴昌旭, 等. 基于飞行QAR数据的重着陆风险定量评价模型[J]. 中国安全科学学报, 2014, 24(2): 88-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201402019.htm

    WANG Lei, SUN Rui-shan, WU Chang-xu, et al. A flight QAR data based model for hard landing risk quantitative evaluation[J]. China Safety Science Journal, 2014, 24(2): 88-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201402019.htm
    [10]
    龙海江. 基于QAR数据的重着陆分析研究[D]. 广汉: 中国民用航空飞行学院, 2020.

    LONG Hai-jiang. Analysis of heavy landing based on QAR data[D]. Guanghan: Civil Aviation Flight University of China, 2020.
    [11]
    郑磊, 池宏, 邵雪焱. 基于QAR数据的飞行操作模式及其风险分析[J]. 中国管理科学, 2017, 25(10): 109-118.

    ZHENG Lei, CHI Hong, SHAO Xue-yan. Pattern recognition and risk analysis for flight operations[J]. Chinese Journal of Management Science, 2017, 25(10): 109-118. (in Chinese)
    [12]
    郑磊, 池宏, 许保光, 等. 飞机重着陆预警分析方法[J]. 数学的实践与认识, 2019, 49(3): 56-72. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201903007.htm

    ZHENG Lei, CHI Hong, XU Bao-guang, et al. Method of early warning analysis for aircraft hard landing[J]. Mathematics in Practice and Theory, 2019, 49(3): 56-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201903007.htm
    [13]
    WANG Xin, MIAO Ling-yun, SUN Hua-bo. Study on risk evaluation model of aircraft hard landing events[C]//CSP. 2019 International Conference on Aviation Safety and Information Technology. Ottawa: CSP, 2019: 93-95.
    [14]
    郑薇. 基于QAR数据的重着陆风险评估及预测研究[D]. 天津: 中国民航大学, 2014.

    ZHENG Wei. Hardlanding risk assessment and forecast research based on QAR data[D]. Tianjin: Civil Aviation University of China, 2014. (in Chinese)
    [15]
    MIDTFJORD A D, DE BIN R, HUSEBY A B. A decision support system for safer airplane landings: predicting runway conditions using XGBoost and explainable AI[J]. Cold Regions Science and Technology, 2022, 199: 1-15.
    [16]
    潘卫军, 张衡衡, 吴天祎, 等. 基于神经网络的飞机着陆速度预测模型[J]. 舰船电子工程, 2022, 42(1): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-JCGC202201018.htm

    PAN Wei-jun, ZHANG Heng-heng, WU Tian-yi, et al. Prediction model of aircraft landing speed based on neural network[J]. Ship Electronic Engineering, 2022, 42(1): 73-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCGC202201018.htm
    [17]
    JEONG S H, LEE K B, HAM J H, et al. Estimation of maximum strains and loads in aircraft landing using artificial neural network[J]. International Journal of Aeronautical and Space Sciences, 2020, 21(1): 117-132. doi: 10.1007/s42405-019-00204-2
    [18]
    TONG C, YIN X, LI J, et al. An innovative deep architecture for aircraft hard landing prediction based on time-series sensor data[J]. Applied Soft Computing, 2018, 73: 344-349. doi: 10.1016/j.asoc.2018.07.061
    [19]
    TONG C, YIN X, WANG S L, et al. A novel deep learning method for aircraft landing speed prediction based on cloud-based sensor data[J]. Future Generation Computer Systems, 2018, 88(11): 552-558. https://www.sciencedirect.com/science/article/pii/S0167739X18310641
    [20]
    陈思, 孙有朝, 郑敏. 基于支持向量机的飞机重着陆风险预警模型[J]. 兵器装备工程学报, 2019, 40(9): 154-158. doi: 10.11809/bqzbgcxb2019.09.032

    CHEN Si, SUN You-chao, ZHENG Min. Heavy landing risk pre-warning model based on support vector machine[J]. Journal of Ordnance Equipment Engineering, 2019, 40(9): 154-158. (in Chinese) doi: 10.11809/bqzbgcxb2019.09.032
    [21]
    常文兵, 张佳宁, 周晟瀚. 基于支持向量机的飞机重着陆预测模型[J]. 飞机设计, 2017, 37(2): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-FJSJ201702005.htm

    CHANG Wen-bing, ZHANG Jia-ning, ZHOU Sheng-han. A prediction model of airplane hard landing based on support vector machine[J]. Aircraft Design, 2017, 37(2): 19-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FJSJ201702005.htm
    [22]
    DING J J, YUAN X Q, LI H X. Performance evaluation of feature selection methods for aircraft hard landing incident prediction[J]. Proceedings of the Association for Information Science and Technology, 2020, 57: e332.
    [23]
    车畅畅, 王华伟, 倪晓梅, 等. 基于多尺度排列熵和长短时记忆神经网络的航空发动机剩余寿命预测[J]. 交通运输工程学报, 2019, 19(5): 106-115. doi: 10.3969/j.issn.1671-1637.2019.05.012

    CHE Chang-chang, WANG Hua-wei, NI Xiao-mei, et al. Residual life prediction of aeroengine based on multi-scale permutation entropy and LSTM neural network[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 106-115. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.05.012
    [24]
    赵阳阳, 夏亮, 江欣国. 基于经验模态分解与长短时记忆神经网络的短时地铁客流预测模型[J]. 交通运输工程学报. 2020, 20(4): 194-204. doi: 10.19818/j.cnki.1671-1637.2020.04.016

    ZHAO Yang-yang, XIA Liang, JIANG Xin-guo. Short-term metro passenger flow prediction based on EMD-LSTM[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 194-204. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.016
    [25]
    ZAYTAR M A, El AMRANI C. Sequence to sequence weather forecasting with long short-term memory recurrent neural networks[J]. International Journal of Computer Applications, 2016, 143(11): 7-11. doi: 10.5120/ijca2016910497
    [26]
    XU Yuan-bao, HU Caihong, WU Qiang, et al. Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation[J]. Journal of Hydrology, 2022, 608: 127553. doi: 10.1016/j.jhydrol.2022.127553
    [27]
    SALINAS E, ABBOTT L F. A model of multiplicative neural responses in parietal cortex[J]. Proceedings of the National Academy of Sciences, 1996, 93(21): 11956-11961. doi: 10.1073/pnas.93.21.11956
    [28]
    HAHNLOSER R L T. On the piecewise analysis of networks of linear threshold neurons[J]. Neural Networks, 1998, 11(4): 691-697. doi: 10.1016/S0893-6080(98)00012-4
    [29]
    LIU Jun-qiang, PAN Chun-lu, FAN Lei, et al. Fault prediction of bearings based on LSTM and statistical process analysis[J]. Reliability Engineering and System Safety, 2021, 214(4): 107646.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (859) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return