Citation: | SHANGGUAN Wei, LI Xin, CHAI Lin-guo, CAO Yue, CHEN Jing-jing, PANG Hao-jie, RUI Tao. Research review on simulation and test of mixed traffic swarm in vehicle-infrastructure cooperative environment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 19-40. doi: 10.19818/j.cnki.1671-1637.2022.03.002 |
[1] |
张毅, 姚丹亚, 李力, 等. 智能车路协同系统关键技术与应用[J]. 交通运输系统工程与信息, 2021, 21(5): 40-51. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105006.htm
ZHANG Yi, YAO Dan-ya, LI Li, et al. Technology and application of intelligent vehicle-infrastructure cooperation systems[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 40-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105006.htm
|
[2] |
田彬, 赵祥模, 徐志刚, 等. 车路协同条件下智能网联高速公路通行效率信息自适应分发协议: NRT-V2X[J]. 中国公路学报, 2019, 32(6): 293-307. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906030.htm
TIAN Bin, ZHAO Xiang-mo, XU Zhi-gang, et al. NRT-V2X: adaptive data dissemination protocol for traffic efficiency of connected and automated highways[J]. China Journal of Highway and Transport, 2019, 32(6): 293-307. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906030.htm
|
[3] |
PETTY K F, NOEIMI H, SANWAL K, et al. The freeway service patrol evaluation project: database support programs, and accessibility[J]. Transportation Research Part C: Emerging Technologies, 1996, 4(2): 71-85. doi: 10.1016/0968-090X(96)00001-0
|
[4] |
HIROSHIMA Y. Development of collision danger reasoning algorithm, Part 5: the basic technology for ASV (advanced safety vehicle)[J]. JSAE Review, 1995, 16(1): 221-224.
|
[5] |
FUKUSHIMA M. The latest trend of V2X driver assistance systems in Japan[J]. Computer Networks, 2011, 55(14): 3134-3141. doi: 10.1016/j.comnet.2011.03.012
|
[6] |
WEIB C. V2X communication in Europe—from research projects towards standardization and field testing of vehicle communication technology[J]. Computer Networks, 2011, 55(14): 3103-3119. doi: 10.1016/j.comnet.2011.03.016
|
[7] |
邹智军, 杨东援. 动态交通状态微观仿真技术初探[J]. 同济大学学报(自然科学版), 1999, 27(3): 305-308. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ199903011.htm
ZOU Zhi-jun, YANG Dong-yuan. Preliminary study on dynamic traffic microsimulation[J]. Journal of Tongji University (Natural Science), 1999, 27(3): 305-308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ199903011.htm
|
[8] |
CHUNG-MAN HO C M, GENTLE J E. A comparison of clock pulse and event algorithms for simulation of traffic flow[J]. ACM SIGSIM Simulation Digest, 1976, 8(1): 53-55. doi: 10.1145/1103189.1103204
|
[9] |
WADA S, HAYAKAWA H. Kink solution in a fluid model of traffic flow[J]. Journal of the Physical Society of Japan, 1998, 67(3): 763-766. doi: 10.1143/JPSJ.67.763
|
[10] |
DEL CASTILLO J M, PINTADO P, BENITEZ F G. The reaction-time of drivers and the stability of traffic flow[J]. Transportation Research Part B: Methodological, 1994, 28(1): 35-60. doi: 10.1016/0191-2615(94)90030-2
|
[11] |
PAPAGEORGIOU M. Some remarks on macroscopic traffic flow modelling[J]. Transportation Research Part A: Policy and Practice, 1998, 32(5): 323-329. doi: 10.1016/S0965-8564(97)00048-7
|
[12] |
DANIŠOVIČ P, JANČAŘÍKOVÁ E, ŠRÁMEK J, et al. Fire spread models and tunnel traffic & operation simulator[J]. Procedia Engineering, 2017, 19(2): 92-95.
|
[13] |
KRONJÄGER W, KONHÄUSER P. Applied traffic flow simulation[J]. IFAC Proceedings Volumes, 1997, 30(8): 777-780. doi: 10.1016/S1474-6670(17)43916-4
|
[14] |
PIPES L A. An operational analysis of traffic dynamics[J]. Journal of Applied Physics, 1953, 24(3): 274-281. doi: 10.1063/1.1721265
|
[15] |
FUKUI M, ISHIBASH Y. Traffic flow in 1D cellular automaton model including cars moving with high speed[J]. Journal of the Physical Society of Japan, 1996, 65(6): 1868-1870. doi: 10.1143/JPSJ.65.1868
|
[16] |
KRAUSS, WAGNER P, GAWRON C. Metastable states in a microscopic model of traffic flow[J]. Physical Review E, 1997, 55(5): 5597-5602. doi: 10.1103/PhysRevE.55.5597
|
[17] |
BARLOVIC R, SANTEN L, SCHADSCHNEIDER A, et al. Metastable states in cellular automata for traffic flow[J]. The European Physical Journal B—Condensed Matter and Complex Systems, 1998, 5(3): 793-800. doi: 10.1007/s100510050504
|
[18] |
WONG S C, WONG W T, LEUNG C M, et al. Group-based optimization of a time-dependent TRANSYT traffic model for area traffic control[J]. Transportation Research Part B: Methodological, 2002, 36(4): 291-312. doi: 10.1016/S0191-2615(01)00004-2
|
[19] |
PARK B B, SCHNEEBERGER J D. Microscopic simulation model calibration and validation: case study of VISSIM simulation model for a coordinated actuated signal system[J]. Transportation Research Record, 2003(1856): 185-192.
|
[20] |
KARAGIANNIS G, ALTINTAS O, EKICI E, et al. Vehicular networking: a survey and tutorial on requirements, architectures, challenges, standards and solutions[J]. IEEE Communications Surveys and Tutorials, 2011, 13(4): 584-616. doi: 10.1109/SURV.2011.061411.00019
|
[21] |
MANIVANNAN P V, RAMAKANTH P. Vision based intelligent vehicle steering control using single camera for automated highway system[J]. Procedia Computer Science, 2018, 133: 839-846. doi: 10.1016/j.procs.2018.07.111
|
[22] |
VIVO G, DALMASSO P, VERNACCHIA F. The European Integrated Project "SAFESPOT"—How ADAS applications co-operate for the driving safety[C]//IEEE. 2007 IEEE Intelligent Transportation Systems Conference. New York: IEEE, 2007: 534-539.
|
[23] |
SIKDAR B. Comparison of broadcasting schemes for infrastructure to vehicular communications[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(2): 492-502. doi: 10.1109/TITS.2011.2182193
|
[24] |
张含, 蔡伯根, 上官伟, 等. 基于多分辨率建模的车路协同系统仿真场景设计与实现[J]. 系统仿真技术, 2013, 9(1): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFJ201301010.htm
ZHANG Han, CAI Bai-gen, SHANGGUAN Wei, et al. MR-based CVIS scenario design and implementation[J]. System Simulation Technology, 2013, 9(1): 52-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFJ201301010.htm
|
[25] |
GIPPS P G. A behavioural car-following model for computer simulation[J]. Transportation Research Part B: Methodological, 1981, 15(2): 105-111. doi: 10.1016/0191-2615(81)90037-0
|
[26] |
PETROV P, NASHASHIBI F. Modeling and nonlinear adaptive control for autonomous vehicle overtaking[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(4): 1643-1656. doi: 10.1109/TITS.2014.2303995
|
[27] |
BUTAKOV V A, IOANNOU P. Personalized driver/vehicle lane change models for ADAS[J]. IEEE Transactions on Vehicular Technology, 2015, 64(10): 4422-4431. doi: 10.1109/TVT.2014.2369522
|
[28] |
蔡伯根, 王丛丛, 上官伟, 等. 车路协同系统信息交互仿真方法[J]. 交通运输工程学报, 2014, 14(3): 111-119. http://transport.chd.edu.cn/article/id/201403015
CAI Bai-gen, WANG Cong-cong, SHANGGUAN Wei, et al. Simulation method of information interaction in CVIS[J]. Journal of Traffic and Transportation Engineering, 2014, 14(3): 111-119. (in Chinese) http://transport.chd.edu.cn/article/id/201403015
|
[29] |
TOUTOUH J, GARCÍA-NIETO J, ALBA E. Intelligent OLSR routing protocol optimization for VANETs[J]. IEEE Transactions on Vehicular Technology, 2012, 61(4): 1884-1894. doi: 10.1109/TVT.2012.2188552
|
[30] |
KHOKHAR R H, NGADI M A, LATIFF M S, et al. Multi-criteria receiver self-election scheme for optimal packet forwarding in vehicular ad hoc networks[J]. International Journal of Computers Communication and Control, 2014, 7(5): 865. doi: 10.15837/ijccc.2012.5.1342
|
[31] |
周连科, 左德承, 崔刚, 等. 考虑节点交通特性的VANET分簇广播协议[J]. 高技术通讯, 2012(5): 468-476.
ZHOU Lian-ke, ZUO De-cheng, CUI Gang, et al. A node-traffic characteristics considered clustering broadcast protocol for VANETs[J]. Chinese High Technology Letters, 2012(5): 468-476. (in Chinese)
|
[32] |
李四辉, 蔡伯根, 上官伟, 等. 车路协同系统仿真信息多分辨率交互方法[J]. 交通运输系统工程与信息, 2014, 14(6): 50-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201406008.htm
LI Si-hui, CAI Bai-gen, SHANGGUAN Wei, et al. Multi-resolution information exchange method in cooperation vehicle-infrastructure system[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(6): 50-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201406008.htm
|
[33] |
CHENG S T, HORNG G J, CHOU C L. Using cellular automata to form car society in vehicular ad hoc networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1374-1384. doi: 10.1109/TITS.2011.2158211
|
[34] |
KALRA N, PADDOCK S M. Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability?[J]. Transportation Research Part A: Policy and Practice, 2016, 94: 182-193. doi: 10.1016/j.tra.2016.09.010
|
[35] |
BRIEFS U. Mcity grand opening[J]. Research Review, 2015, 46(3): 1-2.
|
[36] |
XU Hui-le, ZHANG Yi, LI Li, et al. Cooperative driving at unsignalized intersections using tree search[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(11): 4563-4571. doi: 10.1109/TITS.2019.2940641
|
[37] |
GUO Qiang-qiang, BAN Xue-gang. Macroscopic fundamental diagram based perimeter control considering dynamic user equilibrium[J]. Transportation Research Part B: Methodological, 2020, 136: 87-109. doi: 10.1016/j.trb.2020.03.004
|
[38] |
GHIASI A, HUSSAIN O, QIAN Zhen, et al. A mixed traffic capacity analysis and lane management model for connected automated vehicles: a Markov chain method[J]. Transportation Research Part B: Methodological, 2017, 106: 266-292. doi: 10.1016/j.trb.2017.09.022
|
[39] |
YANG Chao, LOU Wei, LIU Yi, et al. Resource allocation for edge computing-based vehicle platoon on freeway: a contract-optimization approach[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15988-16000. doi: 10.1109/TVT.2020.3039851
|
[40] |
XU Li-wei, ZHUANG Wei-chao, YIN Guo-dong, et al. Energy-oriented cruising strategy design of vehicle platoon considering communication delay and disturbance[J]. Transportation Research Part C: Emerging Technologies, 2019, 107: 34-53. doi: 10.1016/j.trc.2019.07.019
|
[41] |
WANG Zhu-wei, GAO Yu, FANG Chao, et al. Optimal control design for connected cruise control with stochastic communication delays[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15357-15369. doi: 10.1109/TVT.2020.3040321
|
[42] |
ZHONG Zi-jia, LEE J Y. The effectiveness of managed lane strategies for the near-term deployment of cooperative adaptive cruise control[J]. Transportation Research Part A: Policy and Practice, 2019, 129: 257-270. doi: 10.1016/j.tra.2019.08.015
|
[43] |
GE J I, OROSZ G. Connected cruise control among human- driven vehicles: experiment-based parameter estimation and optimal control design[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 445-459. doi: 10.1016/j.trc.2018.07.021
|
[44] |
HAO Liu, KAN Xing-an, SHLADOVER S E, et al. Modeling impacts of cooperative adaptive cruise control on mixed traffic flow in multi-lane freeway facilities[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 261-279. doi: 10.1016/j.trc.2018.07.027
|
[45] |
ZHANG Lin-jun. Cooperative adaptive cruise control in mixed traffic with selective use of vehicle-to-vehicle communication[J]. IET Intelligent Transport Systems, 2018, 12(10): 1243-1254. doi: 10.1049/iet-its.2018.5235
|
[46] |
XIAO Lin, WANG Meng, SCHAKEL W, et al. Unravelling effects of cooperative adaptive cruise control deactivation on traffic flow characteristics at merging bottlenecks[J]. Transportation Research Part C: Emerging Technologies, 2018, 96: 380-397. doi: 10.1016/j.trc.2018.10.008
|
[47] |
GONG Si-yuan, DU Li-li. Cooperative platoon control for a mixed traffic flow including human drive vehicles and connected and autonomous vehicles[J]. Transportation Research Part B: Methodological, 2018, 116: 25-61. doi: 10.1016/j.trb.2018.07.005
|
[48] |
LIN Gui-hua, HU Yu, ZOU Yuan-yang. A mixed-mode traffic assignment model with new time-flow impedance function[J]. International Journal of Modern Physics B, 2018, 32(3): 173-185.
|
[49] |
HUANG Dong-dong, CUI Miao, ZHANG Guang-chi, et al. Trajectory optimization and resource allocation for UAV base stations under in-band backhaul constraint[J]. EURASIP Journal on Wireless Communications and Networking, 2020, 2020: 831-845.
|
[50] |
柴琳果, 蔡伯根, 上官伟, 等. 联网智能车运动学仿真基础环境构建方法[J]. 华南理工大学学报(自然科学版), 2018, 46(1): 66-77. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201801010.htm
CHAI Lin-guo, CAI Bai-gen, SHANGGUAN Wei, et al. A construction approach based on kinematic simulation environment for networked intelligent vehicle[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(1): 66-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201801010.htm
|
[51] |
CHAI Lin-guo, CAI Bai-gen, SHANGGUAN Wei, et al. Connected and autonomous vehicles coordinating approach at intersection based on space-time slot[J]. Transportmetrica A: Transport Science, 2018, 14(10): 929-951. doi: 10.1080/23249935.2018.1452308
|
[52] |
陈俊杰, 蔡伯根, 上官伟, 等. 双向双车道超车行为的智能车队间隙控制优化[J]. 交通运输工程学报, 2019, 19(2): 178-190. http://transport.chd.edu.cn/article/id/201902016
CHEN Jun-jie, CAI Bai-gen, SHANGGUAN Wei, et al. Slot control optimization of intelligent platoon for dual-lane two-way overtaking behavior[J]. Journal of Traffic and Transportation Engineering, 2019, 19(2): 178-190. (in Chinese) http://transport.chd.edu.cn/article/id/201902016
|
[53] |
FENG Yi-heng, YU Chun-hui, XU Shao-bing, et al. An augmented reality environment for connected and automated vehicle testing and evaluation[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium (IV). New York: IEEE, 2018: 1549-1554.
|
[54] |
QIU Wei-zhi, SHANGGUAN Wei, CAI Bai-gen, et al. Advance estimate-based traffic state synchronization for parallel testing[C]//IEEE. 2020 IEEE 23rd International Conference on Intelligent Transportation System. New York: IEEE, 2020: 1-6.
|
[55] |
QIU Wei-zhi, SHANGGUAN Wei, CHAI Lin-guo, et al. Parallel hierarchical control-based efficiency enhancement for large-scale virtual reality traffic simulation[J]. IEEE Intelligent Transportation Systems Magazine, 2021, DOI: 10.1109/MITS.2021.3051473.
|
[56] |
LI Li, WANG Xiao, WANG Kun-feng, et al. Parallel testing of vehicle intelligence via virtual-real interaction[J]. Science Robotics, 2019, 4(28): 4106. doi: 10.1126/scirobotics.aaw4106
|