Citation: | QU Xu, GAN Rui, AN Bo-cheng, LI Lin-heng, CHEN Zhi-jun, RAN Bin. Prediction of traffic swarm movement situation based on generalized spatio-temporal graph convolution network[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 79-88. doi: 10.19818/j.cnki.1671-1637.2022.03.006 |
[1] |
刘静, 关伟. 交通流预测方法综述[J]. 公路交通科技, 2004, 21(3): 82-85. doi: 10.3969/j.issn.1002-0268.2004.03.022
LIU Jing, GUAN Wei. A summary of traffic flow forecasting methods[J]. Journal of Highway and Transportation Research and Development, 2004, 21(3): 82-85. (in Chinese) doi: 10.3969/j.issn.1002-0268.2004.03.022
|
[2] |
VAN DER VOORT M, DOUGHERTY M, WATSON S. Combining kohonen maps with ARIMA time series models to forecast traffic flow[J]. Transportation Research Part C: Emerging Technologies, 1996, 4(5): 307-318. doi: 10.1016/S0968-090X(97)82903-8
|
[3] |
XIE Yuan-chang, ZHANG Yun-long, YE Zhi-rui. Short-term traffic volume forecasting using Kalman filter with discrete wavelet decomposition[J]. Computer-Aided Civil and Infrastructure Engineering, 2007, 22(5): 326-334. doi: 10.1111/j.1467-8667.2007.00489.x
|
[4] |
WILLIAMS B M. Multivariate vehicular traffic flow prediction: evaluation of ARIMAX modeling[J]. Transportation Research Record, 2001(1776): 194-200.
|
[5] |
WU Ren-fei, ZHENG Xun-jia, XU Yong-neng, et al. Modified driving safety field based on trajectory prediction model for pedestrian-vehicle collision[J]. Sustainability, 2019, 11(22): 6254. doi: 10.3390/su11226254
|
[6] |
CHENG Shi-fen, LU Feng, PENG Peng, et al. Short-term traffic forecasting: an adaptive ST-KNN model that considers spatial heterogeneity[J]. Computers, Environment and Urban Systems, 2018, 71: 186-198. doi: 10.1016/j.compenvurbsys.2018.05.009
|
[7] |
HONG W C. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm[J]. Neurocomputing, 2011, 74(12/13): 2096-2107.
|
[8] |
YIN Hong-bin, WONG S C, XU Jian-min, et al. Urban traffic flow prediction using a fuzzy-neural approach[J]. Transportation Research Part C: Emerging Technologies, 2002, 10(2): 85-98. doi: 10.1016/S0968-090X(01)00004-3
|
[9] |
窦慧丽, 刘好德, 吴志周, 等. 基于小波分析和ARIMA模型的交通流预测方法[J]. 同济大学学报(自然科学版), 2009, 37(4): 486-489, 494. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200904016.htm
DOU Hui-li, LIU Hao-de, WU Zhi-zhou, et al. Study of traffic flow prediction based on wavelet analysis and autoregressive integrated moving average model[J]. Journal of Tongji University (Natural Science), 2009, 37(4): 486-489, 494. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200904016.htm
|
[10] |
JIA Yu-han, WU Jian-ping, DU Yi-man. Traffic speed prediction using deep learning method[C]//IEEE. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2016: 1217-1222.
|
[11] |
LYU Yi-sheng, DUAN Yan-jie, KANG Wen-wen, et al. Traffic flow prediction with big data: a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 865-873.
|
[12] |
MAO Pei-pei, JI Xin-kai, QU Xu, et al. Deep learning based vehicle position estimation for human drive vehicle at connected freeway[C]//IEEE. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2020: 1-6.
|
[13] |
MA Xiao-lei, TAO Zhi-min, WANG Yin-hai, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 187-197. doi: 10.1016/j.trc.2015.03.014
|
[14] |
GAO Hong-bo, SU Hang, CAI Ying-feng, et al. Trajectory prediction of cyclist based on dynamic Bayesian network and long short-term memory model at unsignalized intersections[J]. Science China Information Sciences, 2021, 64(7): 1-13.
|
[15] |
FU Rui, ZHANG Zuo, LI Li. Using LSTM and GRU neural network methods for traffic flow prediction[C]//IEEE. 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC). New York: IEEE, 2016: 324-328.
|
[16] |
CUI Zhi-you, KE Rui-min, PU Zi-yuan, et al. Deep bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction[EB/OL]. (2019-11-23)[2021-12-10]. https://arxiv.org/abs/1801.02143.
|
[17] |
YANG Bai-lin, SUN Shu-lin, LI Jian-yuan, et al. Traffic flow prediction using LSTM with feature enhancement[J]. Neurocomputing, 2019, 332: 320-327. doi: 10.1016/j.neucom.2018.12.016
|
[18] |
WU Yuan-kai, TAN Hua-chun, QIN Ling-qiao, et al. A hybrid deep learning based traffic flow prediction method and its understanding[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 166-180. doi: 10.1016/j.trc.2018.03.001
|
[19] |
YU Hai-yang, WU Zhi-hai, WANG Shu-qin, et al. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks[J]. Sensors, 2017, 17(7): 1501. doi: 10.3390/s17071501
|
[20] |
JIN Wen-wei, LIN You-fang, WU Zhi-hao, et al. Spatio-temporal recurrent convolutional networks for citywide short-term crowd flows prediction[C]//ICCDA. Proceedings of the 2nd International Conference on Compute and Data Analysis. New York: ICCDA, 2018: 28-35.
|
[21] |
YU Bing, YIN Hao-teng, ZHU Zhan-xing. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//IJCAI. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. Stockholm: IJCAI, 2017: 3634-3640.
|
[22] |
王增光, 王海起, 陈海波. 基于图卷积网络的短时交通速度预测[J]. 计算机与现代化, 2021(9): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-JYXH202109015.htm
WANG Zeng-guang, WANG Hai-qi, CHEN Hai-bo. Short-term traffic speed prediction based on graph convolutional network[J]. Computer and Modernization, 2021(9): 99-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYXH202109015.htm
|
[23] |
ZHAO Ling, SONG Yu-jiao, ZHANG Chao, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(9): 3848-3858.
|
[24] |
YAN Si-jie, XIONG Yuan-jun, LIN Da-hua. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//AAAI. Proceedings of the AAAI Thirty-second AAAI Conference on Artificial Intelligence. New Orleans: AAAI, 2018: 12328.
|
[25] |
张懿扬, 陈志, 岳文静, 等. 基于时空图卷积网络的视频中人物姿态分类[J]. 计算机技术与发展, 2021, 31(10): 70-75. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ202110012.htm
ZHANG Yi-yang, CHEN Zhi, YUE Wen-jing, et al. Human pose classification in video based on spatial temporal graph convolutional networks[J]. Computer Technology and Development, 2021, 31(10): 70-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ202110012.htm
|
[26] |
张蔚澜, 齐华, 李胜. 时空图卷积网络在人体异常行为识别中的应用[J/OL]. 计算机工程与应用, (2021-11-03)[2021-12-10]. http://kns.cnki.net/kcms/detail/11.2127.tp.20211103.1055.002.html.
ZHANG Wei-lan, QI Hua, LI Sheng. Application of spatial temporal graph convoutional networks in human abnormal behavior recognition[J/OL]. Computer Engineering and Applications, (2021-11-03)[2021-12-10]. http://kns.cnki.net/kcms/detail/11.2127.tp.20211103.1055.002.html. (in Chinese)
|
[27] |
YE Jie-xia, ZHAO Juan-juan, YE Ke-jiang, et al. How to build a graph-based deep learning architecture in traffic domain: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(5): 3904-3924.
|
[28] |
BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[EB/OL]. (2014-05-21)[2021-12-10]. https://doi.org/10.48550/arXiv.1312.6203.
|
[29] |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//ICLR. Proceedings of the 5th International Conference on Learning Representations. Toulon: ICLR, 2017: 1-14.
|
[30] |
DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//ACM. Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 3844-3852.
|
[31] |
Wisconsin Traffic Operations and Safety Laboratory. The WisTransportal data hub information system[EB/OL]. (2016-12-18)[2021-12-10]. http://transportal.cee.wisc.edu/.
|