Citation: | MA Cheng-yuan, ZHU Ji-chen, LAI Jin-tao, ZHANG Zhen, YANG Xiao-guang. Multi-intersection coordinated control method based on group decision-making[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 152-161. doi: 10.19818/j.cnki.1671-1637.2022.03.012 |
[1] |
YAO Han-dong, CUI Jian-xun, LI Xiao-peng, et al. A trajectory smoothing method at signalized intersection based on individualized variable speed limits with location optimization[J]. Transportation Research Part D: Transport and Environment, 2018, 62: 456-473. doi: 10.1016/j.trd.2018.03.010
|
[2] |
AIISLAM S M A B, HAJBABAIE A. Distributed coordinated signal timing optimization in connected transportation networks[J]. Transportation Research Part C: Emerging Technologies, 2017, 80: 272-285. doi: 10.1016/j.trc.2017.04.017
|
[3] |
BEAK B, HEAD K L, FENG Yi-heng. Adaptive coordination based on connected vehicle technology[J]. Journal of the Transportation Research Board, 2017, 2619(1): 1-12. doi: 10.3141/2619-01
|
[4] |
LITTLE J D C, KELSON M D, GARTNER N H. MAXBAND: a program for setting signals on arteries and triangular networks[J]. Journal of the Transportation Research Board, 1981, 795: 40-46.
|
[5] |
GARTNER N H, ASSMAN S F, LASAGA F, et al. A multi-band approach to arterial traffic signal optimization[J]. Transportation Research Part B: Methodological, 1991, 25(1): 55-74. doi: 10.1016/0191-2615(91)90013-9
|
[6] |
曲大义, 万孟飞, 王兹林, 等. 干线协调控制优化及其应用[J]. 交通运输工程学报, 2016, 16(5): 112-121. doi: 10.3969/j.issn.1671-1637.2016.05.013
QU Da-yi, WAN Meng-fei, WANG Zi-lin, et al. Arterial coordination control optimization and application[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 112-121. (in Chinese) doi: 10.3969/j.issn.1671-1637.2016.05.013
|
[7] |
YAN Hui-min, HE Fang, LIN Xi, et al. Network-level multiband signal coordination scheme based on vehicle trajectory data[J]. Transportation Research Part C: Emerging Technologies, 2019, 107: 266-286. doi: 10.1016/j.trc.2019.08.014
|
[8] |
刘芹, 徐建闽. 交通区域协调控制模型[J]. 交通运输工程学报, 2012, 12(3): 108-112. doi: 10.3969/j.issn.1671-1637.2012.03.018
LIU Qin, XU Jian-min. Coordinated control model of regional traffic signals[J]. Journal of Traffic and Transportation Engineering, 2012, 12(3): 108-112. (in Chinese) doi: 10.3969/j.issn.1671-1637.2012.03.018
|
[9] |
LI P F, MIRCHANDANI P, ZHOU X S. Solving simultaneous route guidance and traffic signal optimization problem using space-phase-time hypernetwork[J]. Transportation Research Part B: Methodological, 2015, 81: 103-130. doi: 10.1016/j.trb.2015.08.011
|
[10] |
WADA K, USUI K, TAKIGAWA T, et al. An optimization modeling of coordinated traffic signal control based on the variational theory and its stochastic extension[J]. Transportation Research Part B: Methodological, 2018, 117: 907-925. doi: 10.1016/j.trb.2017.08.031
|
[11] |
WANG P R, LI P F, CHOWDHURY F R, et al. A mixed integer programming formulation and scalable solution algorithms for traffic control coordination across multiple intersections based on vehicle space-time trajectories[J]. Transportation Research Part B: Methodological, 2020, 134: 266-304. doi: 10.1016/j.trb.2020.01.006
|
[12] |
LEE S, WONG S C. Group-based approach to predictive delay model based on incremental queue accumulations for adaptive traffic control systems[J]. Transportation Research Part B: Methodological, 2017, 98: 1-20.
|
[13] |
李冰. 基于随机交通需求预测的主动分布式信号控制研究[D]. 昆明: 昆明理工大学, 2019.
LI Bing. Research on proactive distributed signal control based on stochastic traffic demand prediction[D]. Kunming: Kunming University of Science and Technology, 2019. (in Chinese)
|
[14] |
GOKULAN B P, SRINIVASAN D. Distributed geometric fuzzy multiagent urban traffic signal control[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3): 714-727. doi: 10.1109/TITS.2010.2050688
|
[15] |
EL-TANTAWY S, ABDULHAI B, ABDELGAWAD H. Multiagent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN-ATSC): methodology and large-scale application on downtown Toronto[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3): 1140-1150. doi: 10.1109/TITS.2013.2255286
|
[16] |
ZHU F, AZIZ H M A, QIAN X W, et al. A junction-tree based learning algorithm to optimize network wide traffic control: a coordinated multi-agent framework[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 487-501. doi: 10.1016/j.trc.2014.12.009
|
[17] |
CHU Tian-shu, WANG Jie, LARA C, et al. Multi-agent deep reinforcement learning for large-scale traffic signal control[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1086-1095. doi: 10.1109/TITS.2019.2901791
|
[18] |
WANG Xing-min, YIN Ya-feng, FENG Yi-heng, et al. Learning the max pressure control for urban traffic networks considering the phase switching loss[J]. Transportation Research Part C: Emerging Technologies, 2022, 140: 103670. doi: 10.1016/j.trc.2022.103670
|
[19] |
杨文臣, 张轮, ZHU Feng. 多智能体强化学习在城市交通网络信号控制方法中的应用综述[J]. 计算机应用研究, 2018, 35(6): 1613-1618. doi: 10.3969/j.issn.1001-3695.2018.06.003
YANG Wen-chen, ZHANG Lun, ZHU Feng. Multi-agent reinforcement learning based traffic signal control for integrated urban network: survey of state of art[J]. Application Research of Computers, 2018, 35(6): 1613-1618. (in Chinese) doi: 10.3969/j.issn.1001-3695.2018.06.003
|
[20] |
LI Zhen-ning, YU Hao, ZHANG Guo-hui, et al. Network-wide traffic signal control optimization using a multi-agent deep reinforcement learning[J]. Transportation Research Part C: Emerging Technologies, 2021, 125: 103059. doi: 10.1016/j.trc.2021.103059
|
[21] |
LE T, KOVÁCS P, WALTON N, et al. Decentralized signal control for urban road networks[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 431-450. doi: 10.1016/j.trc.2014.11.009
|
[22] |
UKKUSURI S, DOAN K, AZIZ H M A. A bi-level formulation for the combined dynamic equilibrium based traffic signal control[J]. Procedia—Social and Behavioral Sciences, 2013, 80: 729-752.
|
[23] |
FENG Yi-heng, HEAD K L, KHOSHMAGAHAM S, et al. A real-time adaptive signal control in a connected vehicle environment[J]. Transportation Research Part C: Emerging Technologies, 2015, 55: 460-473. doi: 10.1016/j.trc.2015.01.007
|
[24] |
王正武, 罗大庸, 黄中祥. 基于CTM的信号优化设计及求解[J]. 交通运输工程学报, 2007, 7(4): 84-88. http://transport.chd.edu.cn/article/id/200704018
WANG Zheng-wu, LUO Da-yong, HUANG Zhong-xiang. Optimization designing and solving of signal based on CTM[J]. Journal of Traffic and Transportation Engineering, 2007, 7(4): 84-88. (in Chinese) http://transport.chd.edu.cn/article/id/200704018
|
[25] |
MOHEBIFARD R, HAJBABAIE A. Optimal network-level traffic signal control: a benders decomposition-based solution algorithm[J]. Transportation Research Part B: Methodological, 2019, 121: 252-274.
|
[26] |
AI ISLAM S M A B, HAJBABAIE A, AZIZ H M A. A real- time network-level traffic signal control methodology with partial connected vehicle information[J]. Transportation Research Part C: Emerging Technologies, 2020, 121: 102830.
|
[27] |
ZAIDI A A, KULCSÁR B, WYMEERSCH H. Back-pressure traffic signal control with fixed and adaptive routing for urban vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(8): 2134-2143.
|
[28] |
YU Hao, LIU Pan, FAN Yue-yue, et al. Developing a decentralized signal control strategy considering link storage capacity[J]. Transportation Research Part C: Emerging Technologies, 2021, 124: 102971.
|
[29] |
GARTNER N H, LITTLE J D C, GABBAY H. Optimization of traffic signal settings by mixed-integer linear programming: Part Ⅱ: the network synchronization problem[J]. Transportation Science, 1975, 9(4): 321-343.
|
[30] |
MA Cheng-yuan, YU Chun-hui, YANG Xiao-guang. Trajectory planning for connected and automated vehicles at isolated signalized intersections under mixed traffic environment[J]. Transportation Research Part C: Emerging Technologies, 2021, 130: 103309.
|
[31] |
YU C H, FENG Y H, LIU H X, et al. Corridor level cooperative trajectory optimization with connected and automated vehicles[J]. Transportation Research Part C: Emerging Technologies, 2019, 105: 405-421.
|