Citation: | GAO Tao, XING Ke, LIU Zhan-wen, CHEN Ting, YANG Zhao-chen, LI Yong-hui. Traffic sign detection algorithm based on pyramid multi-scale fusion[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 210-224. doi: 10.19818/j.cnki.1671-1637.2022.03.017 |
[1] |
马永杰, 马芸婷, 程时升, 等. 基于改进YOLOv3模型与Deep-SORT算法的道路车辆检测方法[J]. 交通运输工程学报, 2021, 21(2): 222-231. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202102022.htm
MA Yong-jie, MA Yun-ting, CHENG Shi-sheng, et al. Road vehicle detection method based on improved YOLOv3 model and deep-SORT algorithm[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 222-231. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202102022.htm
|
[2] |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//IEEE. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2005: 886-893.
|
[3] |
PICCIOLI G, DE MICHEL E, PARODI P, et al. Robust method for road sign detection and recognition[J]. Image and Vision Computing, 1996, 14(3): 209-223. doi: 10.1016/0262-8856(95)01057-2
|
[4] |
梁敏健, 崔啸宇, 宋青松, 等. 基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法[J]. 交通运输工程学报, 2017, 17(3): 151-158. doi: 10.3969/j.issn.1671-1637.2017.03.016
LIANG Min-jian, CUI Xiao-yu, SONG Qing-song, et al. Traffic sign recognition method based on HOG-Gabor feature fusion and Softmax classifier[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 151-158. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.03.016
|
[5] |
DENG Li, ABDEL-HAMID O, YU Dong. A deep convolutional neural network using heterogeneous pooling for trading acoustic invariance with phonetic confusion[C]//IEEE. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. New York: IEEE, 2013: 6669-6673.
|
[6] |
马永杰, 程时升, 马芸婷, 等. 卷积神经网络及其在智能交通系统中的应用综述[J]. 交通运输工程学报, 2021, 21(4): 48-71. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202104006.htm
MA Yong-jie, CHENG Shi-sheng, MA Yun-ting, et al. Review of convolutional neural network and its application in intelligent transportation system[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 48-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202104006.htm
|
[7] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE. 27th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2014: 580-587.
|
[8] |
GIRSHICK R. Fast R-CNN[C]//IEEE. 28th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 1440-1448.
|
[9] |
REN Shao-qing, HE Kai-ming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
[10] |
ZHU Zhe, LIANG Dun, ZHANG Song-hai, et al. Traffic- sign detection and classification in the wild[C]//IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 2110-2118.
|
[11] |
LIANG Zhen-wen, SHAO Jie, ZHANG Dong-yang, et al. Traffic sign detection and recognition based on pyramidal convolutional networks[J]. Neural Computing and Applications, 2020, 32(11): 6533-6543. doi: 10.1007/s00521-019-04086-z
|
[12] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 2117-2125.
|
[13] |
周苏, 支雪磊, 刘懂, 等. 基于卷积神经网络的小目标交通标志检测算法[J]. 同济大学学报(自然科学版), 2019, 47(11): 1626-1632. doi: 10.11908/j.issn.0253-374x.2019.11.012
ZHOU Su, ZHI Xue-lei, LIU Dong, et al. A convolutional neural network-based method for small traffic sign detection[J]. Journal of Tongji University (Natural Science), 2019, 47(11): 1626-1632. (in Chinese) doi: 10.11908/j.issn.0253-374x.2019.11.012
|
[14] |
HONG S, ROH B, KIM H, et al. PVANet: lightweight deep neural networks for real-time object detection[EB/OL]. (2016-12-09)[2022-07-02]. https://arxiv.org/abs/1611.08588.
|
[15] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 779-788.
|
[16] |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 7263-7271.
|
[17] |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[R]. Ithaca: Cornell University, 2018.
|
[18] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Springer. 14th European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
|
[19] |
FU Cheng-yang, LIU Wei, RANGA A, et al. DSSD: Deconvolutional single shot detector[J]. arXiv, 2017: 20200017371.
|
[20] |
RAJENDRAN S P, SHINE L, PRADEEP R, et al. Real-time traffic sign recognition using yolov3 based detector[C]//IEEE. 10th International Conference on Computing, Communication and Networking Technologies. New York: IEEE, 2019: 1-7.
|
[21] |
STALLKAMP J, SCHLIPSING M, SALMEN J, et al. The German traffic sign recognition benchmark: A multi-class classification competition[C]//IEEE. 2011 International Joint Conference on Neural Networks. New York: IEEE, 2011: 1453-1460.
|
[22] |
ZHANG Hui-bing, QIN Long-fei, LI Jun, et al. Real-time detection method for small traffic signs based on YOLOv3[J]. IEEE Access, 2020, 8: 64145-64156. doi: 10.1109/ACCESS.2020.2984554
|
[23] |
ZHANG Hong-yi, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. (2018-04-27)[2022-07-02]. https://arxiv.org/abs/1710.09412.
|
[24] |
WU Yi-qiang, LI Zhi-yong, CHEN Ying, et al. Real-time traffic sign detection and classification towards real traffic scene[J]. Multimedia Tools and Applications, 2020, 79(25/26): 18201-18219.
|
[25] |
HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Deep residual learning for image recognition[C]//IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778.
|
[26] |
REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]//IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 658-666.
|
[27] |
高涛, 刘梦尼, 陈婷, 等, 等. 结合暗亮通道先验的远近景融合去雾算法[J]. 西安交通大学学报, 2021, 55(10): 78-86. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202110009.htm
GAO Tao, LIU Meng-ni, CHEN Ting, et al. A far and near scene fusion defogging algorithm based on the prior of dark-light channel[J]. Journal of Xi'an Jiaotong University, 2021, 55(10): 78-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202110009.htm
|
[28] |
ŽALIK K R. An efficient k'-means clustering algorithm[J]. Pattern Recognition Letters, 2008, 29(9): 1385-1391. doi: 10.1016/j.patrec.2008.02.014
|
[29] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Springer. 13th European conference on computer vision. Berlin: Springer, 2014: 740-755.
|
[30] |
EVERINGHAM M, VAN L, CHRISTOPHER W, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
|