Citation: | CHEN Ting, YAO Da-chun, GAO Tao, QIU Hui-hui, GUO Chang-xin, LIU Zhan-wen, LI Yong-hui, BIAN Hao-yi. A fused network based on PReNet and YOLOv4 for traffic object detection in rainy environment[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 225-237. doi: 10.19818/j.cnki.1671-1637.2022.03.018 |
[1] |
唐立, 卿三东, 徐志刚, 等. 自动驾驶公众接受度研究综述[J]. 交通运输工程学报, 2020, 20(2): 131-146. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202002011.htm
TANG Li, QING San-dong, XU Zhi-gang, et al. Research review on public acceptance of autonomous driving[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 131-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202002011.htm
|
[2] |
缪炳荣, 张卫华, 刘建新, 等. 工业4.0下智能铁路前沿技术问题综述[J]. 交通运输工程学报, 2021, 21(1): 115-131. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101008.htm
MIAO Bing-rong, ZHANG Wei-hua, LIU Jian-xin, et al. Review on frontier technical issues of intelligent railways under industry 4.0[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 115-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101008.htm
|
[3] |
杨澜, 赵祥模, 吴国垣, 等. 智能网联汽车协同生态驾驶策略综述[J]. 交通运输工程学报, 2020, 20(5): 58-72. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202005008.htm
YANG Lan, ZHAO Xiang-mo, WU Guo-yuan, et al. Review on connected and automated vehicles based cooperative eco-driving strategies[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 58-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202005008.htm
|
[4] |
马永杰, 马芸婷, 程时升, 等. 基于改进YOLOv3模型与Deep-SORT算法的道路车辆检测方法[J]. 交通运输工程学报, 2021, 21(2): 222-231. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202102022.htm
MA Yong-jie, MA Yun-ting, CHENG Shi-sheng, et al. Road vehicle detection method based on improved YOLOv3 model and deep-SORT algorithm[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 222-231. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202102022.htm
|
[5] |
ZHANG He, PATEL V M. Density-aware single image de-raining using a multi-stream dense network[C]//IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 695-704.
|
[6] |
LI Xia, WU Jian-long, LIN Zhou-chen, et al. Recurrent squeeze-and-excitation context aggregation net for single image deraining[C]//Springer. 2014 European Conference on Computer Vision. Berlin: Springer, 2018: 262-277.
|
[7] |
REN D, ZUO W, HU Q, et al. Progressive image deraining networks: A better and simpler baseline[C]//IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 3932-3941.
|
[8] |
JIN Xin, CHEN Zhi-bo, LI Wei-ping. AI-GAN: asynchronous interactive generative adversarial network for single image rain removal[J]. Pattern Recognition, 2020, 100: 107143. doi: 10.1016/j.patcog.2019.107143
|
[9] |
柳长源, 王琪, 毕晓君. 基于多通道多尺度卷积神经网络的单幅图像去雨方法[J]. 电子与信息学报, 2020, 42(9): 2285-2292. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202009027.htm
LIU Chang-yuan, WANG Qi, BI Xiao-jun. Research on rain removal method for single image based on multi-channel and multi-scale CNN[J]. Journal of Electronics and Information Technology, 2020, 42(9): 2285-2292. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202009027.htm
|
[10] |
LIN Xiao, MA Li-zhuang, SHENG Bin, et al. Utilizing two-phase processing with FBLS for single image deraining[J]. IEEE Transactions on Multimedia, 2020, 23: 664-676.
|
[11] |
PENG Jia-yi, XU Yong, CHEN Tian-yi, et al. Single-image raindrop removal using concurrent channel-spatial attention and long-short skip connections[J]. Pattern Recognition Letters, 2020, 131: 121-127. doi: 10.1016/j.patrec.2019.12.012
|
[12] |
SUN Guo-min, LENG Jin-song, CATTANI C. A particular directional multilevel transform based method for single-image rain removal[J]. Knowledge-Based Systems, 2020, 200: 106000. doi: 10.1016/j.knosys.2020.106000
|
[13] |
PENG Long, JIANG Ai-wen, Yi Qiao-si, et al. Cumulative rain density sensing network for single image Derain[J]. IEEE Signal Processing Letters, 2020, 27: 406-410. doi: 10.1109/LSP.2020.2974691
|
[14] |
BI Xiao-jun, XING Jun-yao. Multi-scale weighted fusion attentive generative adversarial network for single image de-raining[J]. IEEE Access, 2020, 8: 69838-69848. doi: 10.1109/ACCESS.2020.2983436
|
[15] |
WANG Hong, WU Yi-chen, XIE Qi, et al. Structural residual learning for single image rain removal[J]. Knowledge-Based Systems, 2021, 213: 106595. doi: 10.1016/j.knosys.2020.106595
|
[16] |
高涛, 刘梦尼, 陈婷, 等. 结合暗亮通道先验的远近景融合去雾算法[J]. 西安交通大学学报, 2021, 55(10): 78-86. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202110009.htm
GAO Tao, LIU Meng-ni, CHEN Ting, et al. A far and near scene fusion defogging algorithm based on the prior of dark-light channel[J]. Journal of Xi'an Jiaotong University, 2021, 55(10): 78-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202110009.htm
|
[17] |
CHEN Ting, LIU Meng-ni, GAO Tao, et al. A fusion-based defogging algorithm[J]. Remote Sensing, 2022, 14(2): 425. doi: 10.3390/rs14020425
|
[18] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 779-788.
|
[19] |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 6517-6525.
|
[20] |
REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv, 2018: 20200100292.
|
[21] |
BOCHKOVSKIY A, WANG Chien-yao, LIAO Hong-yuan. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv, 2020: 20200411830.
|
[22] |
NING Zhang, MI Zhi-wei. Research on surface defect detection algorithm of strip steel based on improved YOLOv3[J]. Journal of Physics: Conference Series, 2021, 1907(1): 012015. doi: 10.1088/1742-6596/1907/1/012015
|
[23] |
YU Pei-dong, WANG Xin, LIU Jian-hui, et al. Bridge target detection in remote sensing image based on improved YOLOv4 algorithm[C]//ACM. 2020 4th International Conference on Computer Science and Artificial Intelligence. New York: ACM, 2020: 139-145.
|
[24] |
CHEN Wen-kang, LU Sheng-lian, LIU Bing-hao, et al. Detecting citrus in orchard environment by using improved YOLOv4[J]. Scientific Programming, 2020, 2020: 8859237.
|
[25] |
ZHU Qin-feng, ZHENG Hui-feng, WANG Yue-bing, et al. Study on the evaluation method of sound phase cloud maps based on an improved YOLOv4 algorithm[J]. Sensors, 2020, 20(15): 4314. doi: 10.3390/s20154314
|
[26] |
HU Jie, SHEN Li, ALBANIE S. Squeeze-and-excitation networks[C]// IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 7132-7141.
|
[27] |
DENG Jie, DONG Wei, SOCHER R, et al. Imagenet: A large-scale hierarchical image database[C]//IEEE. 2009 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2009: 248-255.
|
[28] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Springer. 13th European Conference on Computer Vision. Berlin: Springer, 2014: 740-755.
|
[29] |
ARTHUR D, VASSILVITSKⅡ S. k-means++: the advantages of careful seeding[C]//ACM. 18th Annual ACM-SIAM Symposium on Discrete Algorithms. New York: ACM, 2007: 1027-1035.
|
[30] |
CHOWDHURY K, CHAUDHURI D, PAL A K, et al. Seed selection algorithm through k-means on optimal number of clusters[J]. Multimedia Tools and Applications, 2019, 78(13): 18617-18651. doi: 10.1007/s11042-018-7100-4
|
[31] |
YAMAMICHI K, HAN Xian-hua. MCGKT-Net: Multi-level context gating knowledge transfer network for single image deraining[C]//Springer. 15th Asian Conference on Computer Vision. Berlin: Springer, 2020: 1-17.
|
[32] |
YANG Wen-han, TAN R T, FENG Jia-shi, et al. Deep joint rain detection and removal from a single image[C]//IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 1357-1366.
|
[33] |
LI Yu, TAN Robby T, GUO Xiao-jie, et al. Rain streak removal using layer priors[C]//IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 2736-2744.
|
[34] |
ZHANG He, SINDAGI V, PATEL V M. Image de-raining using a conditional generative adversarial network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(11): 3943-3956. doi: 10.1109/TCSVT.2019.2920407
|
[35] |
FU Xue-yang, HUANG Jia-bin, ZENG De-lu, et al. Removing rain from single images via a deep detail network[C]//IEEE. 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 3855-3863.
|
[36] |
ZHANG He, PATEL V M. Density-aware single image de-raining using a multi-stream dense network[C]//IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 695-704.
|
[37] |
GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? the KITTI vision benchmark suite[C]//IEEE. 25th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2012: 3354-3361.
|
[38] |
CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 3213-3223.
|
[39] |
NEUHOLD G, OLLMANN T, BULÒ S R, et al. The mapillary vistas dataset for semantic understanding of street scenes[C]//IEEE. 30th IEEE International Conference on Computer Vision. New York: IEEE, 2017: 4990-4999.
|
[40] |
YU Fisher, XIAN Wen-qi, CHEN Ying-ying, et al. BDD100K: a diverse driving video database with scalable annotation tooling[EB/OL]. (2020-04-08)[2022-07-02]. https://arxiv.org/abs/1805.04687v2.
|
[41] |
CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving[C]//IEEE. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2020: 11618-11628.
|
[42] |
HUANG Xin-yu, WANG Peng, CHENG Xin-jing, et al. The ApolloScape open dataset for autonomous driving and its application[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10): 2702-2719. doi: 10.1109/TPAMI.2019.2926463
|
[43] |
ZHU Zhe, LIANG Dun, ZHANG Song-hai, et al. Traffic-sign detection and classification in the wild[C]//IEEE. 29th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 2110-2118.
|
[44] |
STALLKAMP J, SCHLIPSING M, SALMEN J, et al. The German traffic sign recognition benchmark: a multi-class classification competition[C]// IEEE. 2011 International Joint Conference on Neural Networks. New York: IEEE, 2011: 1453-1460.
|