Volume 22 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
ZHAO Tong, SHANGGUAN Wei, CHAI Lin-guo, GUO Peng. Scenario factor analysis and test case generation for vehicle-infrastructure cooperative mixed traffic[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 263-276. doi: 10.19818/j.cnki.1671-1637.2022.03.021
Citation: ZHAO Tong, SHANGGUAN Wei, CHAI Lin-guo, GUO Peng. Scenario factor analysis and test case generation for vehicle-infrastructure cooperative mixed traffic[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 263-276. doi: 10.19818/j.cnki.1671-1637.2022.03.021

Scenario factor analysis and test case generation for vehicle-infrastructure cooperative mixed traffic

doi: 10.19818/j.cnki.1671-1637.2022.03.021
Funds:

National Key Research and Development Program of China 2018YFB1600600

Science and Technology Research and Development Program of China Railway N2021G045

More Information
  • Author Bio:

    ZHAO Tong(1996-), male, doctoral student, Tong_Zhao@bjtu.edu.cn

    SHANGGUAN Wei(1979-), male, professor, PhD, wshg@bjtu.edu.cn

  • Received Date: 2021-12-12
  • Publish Date: 2022-06-25
  • Considering the test requirements of multi-vehicle efficiency and single-vehicle safety scenarios in a mixed traffic environment, a test case generation method for the vehicle-infrastructure cooperation was developed based on the scenario factor analysis of mixed traffic. For higher diversity and coverage of test cases, the interaction mechanism of mixed traffic characteristic factors was analyzed, the hierarchical model of mixed traffic scenario factors was constructed, and the consistency description index of the importance of scenario factors was proposed. On this basis, a complexity model of test cases was built. For the simulation and test of multi-vehicle efficiency scenarios, a complexity-inspired generation combination test case method was proposed, and a combination strategy with strong coupling of scenario factors was designed. For the simulation and test of single-vehicle safety scenarios, a Monte Carlo test case generation method based on the complexity clustering was put forward, and a sampling mechanism of characteristic parameters of risk scenarios was designed. Typical scenarios of vehicle-infrastructure cooperative mixed traffic were selected for simulation experiments, to verify the effectiveness of the proposed test case generation method. Research results show that for the ramp-merging scenario test of expressways in mixed traffic of multi-vehicle efficiency, compared with the traditional pairwise test method, the proposed method improves the maximum complexity of scenarios, proportion of high-complexity scenarios, and coverage of test cases by 11.93%, 60.02%, and 12.08%, respectively. For the vehicle-infrastructure cooperative lane-changing warning scenario test of single-vehicle safety, compared with the traditional Monte Carlo test method, the proposed method raises the number of dangerous scenarios by 195%, with reducing the parameter estimation error by 5.95%, and increases the number of high-risk scenarios by 119%, with reducing the parameter estimation error by 4.78%. Therefore, the proposed method can improve the diversity and coverage of test cases, contribute to carry out the functional test of the vehicle-infrastructure cooperative system under complex environments and risk conditions, and can effectively meet the test requirements of multi-vehicle efficiency and single-vehicle safety scenarios. 6 tabs, 11 figs, 34 refs.

     

  • loading
  • [1]
    MENZEL T, BAGSCHIK G, MAURER M. Scenarios for development, test and validation of automated vehicles[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium (Ⅳ). New York: IEEE, 2018: 1821-1827.
    [2]
    WEBER H, BOCK J, KLIMKE J, et al. A framework for definition of logical scenarios for safety assurance of automated driving[J]. Traffic Injury Prevention, 2019, 20(S1): 65-70.
    [3]
    ULBRICH S, MENZEL T, RESCHKA A, et al. Defining and substantiating the terms scene, situation, and scenario for automated driving[C]//IEEE. 2015 IEEE 18th International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2018: 982-988.
    [4]
    徐向阳, 胡文浩, 董红磊, 等. 自动驾驶汽车测试场景构建关键技术综述[J]. 汽车工程, 2021, 43(4): 610-619. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202104021.htm

    XU Xiang-yang, HU Wen-hao, DONG Hong-lei, et al. Review of key technologies for autonomous vehicle test scenario construction[J]. Automotive Engineering, 2021, 43(4): 610-619. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202104021.htm
    [5]
    朱冰, 张培兴, 赵健, 等. 基于场景的自动驾驶汽车虚拟测试研究进展[J]. 中国公路学报, 2019, 32(6): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906002.htm

    ZHU Bing, ZHANG Pei-xing, ZHAO Jian, et al. Review of scenario-based virtual validation methods for automated vehicles[J]. China Journal of Highway and Transport, 2019, 32(6): 1-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201906002.htm
    [6]
    ELROFAI H, PAARDEKOOPER J, GELDER E, et al. Scenario-based safety validation of connected and automated driving[R]. Helmond: TNO, 2018.
    [7]
    HINA M D, SOUKANE A, RAMDANE-CHERIF A. Cognition of driving context in a connected and semi-autonomous vehicle: a perspective[J]. Ada User Journal, 2017, 38(4): 222-226.
    [8]
    ROCKLAGE E, KRAFT H, KARATAS A, et al. Automated scenario generation for regression testing of autonomous vehicles[C]//IEEE. 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2017: 476-483.
    [9]
    白雪松, 邓伟文, 任秉韬, 等. 一种自动驾驶仿真场景要素的提取方法[J]. 汽车工程, 2021, 43(7): 1030-1036, 1065. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202107011.htm

    BAI Xue-song, DENG Wei-wen, REN Bing-tao, et al. An extraction method of scenario elements for autonomous driving simulation[J]. Automotive Engineering, 2021, 43(7): 1030-1036, 1065. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202107011.htm
    [10]
    XIA Qin, DUAN Jian-li, GAO Feng, et al. Test scenario design for intelligent driving system ensuring coverage and effectiveness[J]. International Journal of Automotive Technology, 2018, 19(4): 751-758. doi: 10.1007/s12239-018-0072-6
    [11]
    XIA Qin, DUAN Jian-li, GAO Feng, et al. Automatic generation method of test scenario for ADAS based on complexity[J]. SAE Technical Paper Series, 2017-01-1992.
    [12]
    GAO Feng, DUAN Jian-li, HAN Zai-dao, et al. Automatic virtual test technology for intelligent driving systems considering both coverage and efficiency[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14365-14376. doi: 10.1109/TVT.2020.3033565
    [13]
    GAO Feng, DUAN Jian-li, HE Ying-dong, et al. A test scenario automatic generation strategy for intelligent driving systems[J]. Mathematical Problems in Engineering, 2019, 2019: 3737486.
    [14]
    ROESENER C, FAHRENKROG F, UHLIG A, et al. A scenario-based assessment approach for automated driving by using time series classification of human-driving behaviour[C]//IEEE. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2016: 1360-1365.
    [15]
    HALLERBACH S, XIA Yi-qun, EBERLE U, et al. Simulation-based identification of critical scenarios for cooperative and automated vehicles[J]. SAE International Journal of Connected and Automated Vehicles, 2018, 1(2): 93-106. doi: 10.4271/2018-01-1066
    [16]
    LANGNER J, BACH J, RIES L, et al. Estimating the uniqueness of test scenarios derived from recorded real-world-driving-data using autoencoders[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium (IV). New York: IEEE, 2018: 1860-1866.
    [17]
    FELLNER A, KRENN W, SCHLICK R, et al. Model-based, mutation-driven test-case generation via heuristic-guided branching search[J]. ACM Transactions on Embedded Computing Systems, 2019, 18(1): 1-28.
    [18]
    舒红, 袁康, 修海林, 等. 自动驾驶汽车基础测试场景构建研究[J]. 中国公路学报, 2019, 32(11): 245-254. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201911026.htm

    SHU Hong, YUAN Kang, XIU Hai-lin, et al. Construction of basic test scenarios of automated vehicles[J]. China Journal of Highway and Transport, 2019, 32(11): 245-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201911026.htm
    [19]
    DUAN Jian-li, GAO Feng, HE Ying-dong. Test scenario generation and optimization technology for intelligent driving systems[J]. IEEE Intelligent Transportation Systems Magazine, 2022, 14(1): 115-127. doi: 10.1109/MITS.2019.2926269
    [20]
    上官伟, 张凤娇, 蔡伯根, 等. 基于萤火虫-免疫算法的CVIS测试序列优化方法[J]. 中国公路学报, 2017, 30(11): 129-137, 155. doi: 10.3969/j.issn.1001-7372.2017.11.014

    SHANGGUAN Wei, ZHANG Feng-jiao, CAI Bai-gen, et al. IFA-based test sequence optimization method for CVIS[J]. China Journal of Highway and Transport, 2017, 30(11): 129-137, 155. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.11.014
    [21]
    MULLINS G E, STANKIEWICZ P G, HAWTHORNE R C, et al. Adaptive generation of challenging scenarios for testing and evaluation of autonomous vehicles[J]. Journal of Systems and Software, 2018, 137: 197-215. doi: 10.1016/j.jss.2017.10.031
    [22]
    KLISCHAT M, LIU E I, HOLTKE F, et al. Scenario factory: creating safety-critical traffic scenarios for automated vehicles[C]//IEEE. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2020: 1-7.
    [23]
    KLISCHAT M, ALTHOFF M. Generating critical test scenarios for automated vehicles with evolutionary algorithms[C]//IEEE. 2019 IEEE Intelligent Vehicles Symposium (IV). New York: IEEE, 2019: 2352-2358.
    [24]
    FENG Shuo, FENG Yi-heng, SUN Hao-wei, et al. Testing scenario library generation for connected and automated vehicles: n adaptive framework[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 1213-1222. doi: 10.1109/TITS.2020.3023668
    [25]
    HUANG Li, XIA Qin, XIE Fei, et al. Study on the test scenarios of level 2 automated vehicles[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium (Ⅳ). New York: IEEE, 2018: 49-54.
    [26]
    周文帅, 朱宇, 赵祥模, 等. 面向高速公路车辆切入场景的自动驾驶测试用例生成方法[J]. 汽车技术, 2021(1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS202101003.htm

    ZHOU Wen-shuai, ZHU Yu, ZHAO Xiang-mo, et al. Vehicle cut-in test case generation methods for testing of autonomous driving on highway[J]. Automobile Technology, 2021(1): 11-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS202101003.htm
    [27]
    ZHAO Ding, HUANG Xia-nan, PENG H, et al. Accelerated evaluation of automated vehicles in car-following maneuvers[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3): 733-744. doi: 10.1109/TITS.2017.2701846
    [28]
    ZHANG Song-an, PENG H, ZHAO Ding, et al. Accelerated evaluation of autonomous vehicles in the lane change scenario based on subset simulation technique[C]//IEEE. 2018 21st International Conference on Intelligent Transportation Systems (ITSC). New York: IEEE, 2018: 3935-3940.
    [29]
    ARIEF M, HUANG Zhi-yuan, KUMAR G K S, et al. Deep probabilistic accelerated evaluation: a robust certifiable rare-event simulation methodology for black-box safety-critical systems[C]//BANERJEE A, FUKUMIZU K. 24th International Conference on Artificial Intelligence and Statistics (AISTATS). Brookline: Microtome Publishing, 2021: 595-603.
    [30]
    邓伟文, 李江坤, 任秉韬, 等. 面向自动驾驶的仿真场景自动生成方法综述[J]. 中国公路学报, 2022, 35(1): 316-333. doi: 10.3969/j.issn.1001-7372.2022.01.027

    DENG Wei-wen, LI Jiang-kun, REN Bing-tao, et al. A survey on automatic simulation scenario generation methods for autonomous driving[J]. China Journal of Highway and Transport, 2022, 35(1): 316-333. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.01.027
    [31]
    王润民, 朱宇, 赵祥模, 等. 自动驾驶测试场景研究进展[J]. 交通运输工程学报, 2021, 21(2): 21-37. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202102006.htm

    WANG Run-min, ZHU Yu, ZHAO Xiang-mo, et al. Research progress on test scenario of autonomous driving[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 21-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202102006.htm
    [32]
    KIM B, MASUDA T, SHIRAISHI S. Test specification and generation for connected and autonomous vehicle in virtual environments[J]. ACM Transactions on Cyber-Physical Systems, 2020, 4(1): 1-26.
    [33]
    KESTING A, TREIBER M, HELBING D. Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368(1928): 4585-4605.
    [34]
    MILANÉS V, SHLADOVER S. Modelling cooperative and autonomous adaptive cruise control dynamic responses using experimental data[J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 285-300.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1269) PDF downloads(165) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return